精英家教网 > 高中数学 > 题目详情
11.直线L的方程为-Ax-By+C=0,若直线L过原点和一、三象限,则(  )
A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.C=0,AB>0

分析 直线过原点得到C=0,直线过一、三象限得到斜率大于0,从而求出答案.

解答 解:∵直线L的方程为-Ax-By+C=0,
若直线L过原点和一、三象限,
则AB<0,C=0,
故选:C.

点评 本题考查了直线方程问题,考查直线的斜率,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.把函数y=cos2x+$\sqrt{3}$sin2x的图象向左平移m(其中m>0)个单位,所得图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-2,则实数m的值为(  )
A.±2B.±4C.-4或0D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=1,则$\overrightarrow{a}$和$\overrightarrow{b}$夹角大小为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=(-1,m),$\overrightarrow{c}$=(1,2),若($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,直线AB的方程为3x-2y-1=0,直线AC的方程为2x+3y-18=0.直线BC的方程为3x+4y-m=0(m≠25).
(1)求证:△ABC为直角三角形;
(2)当△ABC的BC边上的高为1时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:
 x 3 4 5 6
 y 2.5 3 m 4.5
据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是$\stackrel{∧}{y}$=0.7x+0.35,则实数m的值为  (  )
A.3.5B.3.85C.4D.4.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-1,x<1\\-\frac{1}{2},x=1\\ 1+{log_{\frac{1}{2}}}x,x>1\end{array}\right.$,g(x)=f(x)-k,k为常数,给出下列四种说法:
①f(x)的值域是(-∞,1];
 ②当$k=-\frac{1}{2}$时,g(x)的所有零点之和等于$2\sqrt{2}$;
③当k≤-1时,g(x)有且仅有一个零点;  
④f(x+1)是偶函数.
其中正确的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已数列的前n项和为Sn,且满Sn-1-Sn=2Sn•Sn-1(n∈N*,n≥2),a1=1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{S}_{n}}$,Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$,若Tn<2m-1对任意的正整数恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案