精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=(-1,m),$\overrightarrow{c}$=(1,2),若($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则m=-3.

分析 利用向量的坐标运算性质、向量公式定理即可得出.

解答 解:∵$\overrightarrow{a}$+$\overrightarrow{b}$=(-1,1+m),($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,
∴1+m+2=0,
解得m=-3.

点评 本题考查了向量的坐标运算性质、向量公式定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下面给出了四个类比推理:
(1)由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个向量则($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)”
(2)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”
(3)“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1,z2为复数,若z${\;}_{1}^{2}$+z${\;}_{2}^{2}$=0则z1=z2=0”;
(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”
上述四个推理中,结论正确的序号是(  )
A.(2)(4)B.(1)(2)(4)C.(2)(3)D.(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ;
②若α⊥β,m∥α,则m⊥β;           
③若m⊥α,m∥β,则α⊥β;       
④若m∥n,m∥α,则n∥α.
其中真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.5位大学生站在一排照相.
(1)若其中的甲乙两位同学必须相等,问有多少种不同的排法?
(2)若上述5位大学生中有3位女大学生和2位男大学生,则这两位男大学生不相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的侧面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线L的方程为-Ax-By+C=0,若直线L过原点和一、三象限,则(  )
A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.C=0,AB>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,已知AD=PD,PA=6,BC=8,DF=5,求证:
(1)直线PA∥平面DEF;
(2)平面DEF⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点,且$\frac{BE}{EC}$=λ.
(Ⅰ)求证:平面ADM⊥平面PBC;
(Ⅱ)是否存在实数λ,使得二面角P-DE-B的余弦值为$\frac{\sqrt{2}}{2}$?若存在,求出实数λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为(  )
A.36πB.45πC.32πD.144π

查看答案和解析>>

同步练习册答案