精英家教网 > 高中数学 > 题目详情
9.设$\overrightarrow a=({1,-2}),\overrightarrow b=({3,4}),\overrightarrow c=({2,-1}),则({\overrightarrow a+\overrightarrow b})•\overrightarrow c$=(  )
A.6B.5C.4D.3

分析 根据题意,由$\overrightarrow{a}$、$\overrightarrow{b}$的坐标计算可得向量$\overrightarrow{a}$+$\overrightarrow{b}$的坐标,进而由向量数量积的坐标计算公式计算可得答案.

解答 解:根据题意,$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(3,4),
则$\overrightarrow{a}$+$\overrightarrow{b}$=(4,2),
又由$\overrightarrow{c}$=(2,-1),
则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=4×2+2×(-1)=6;
故选:A.

点评 本题考查向量的数量积的计算,关键求出向量$\overrightarrow{a}$+$\overrightarrow{b}$的坐标.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北省高二文上第一次月考数学试卷(解析版) 题型:解答题

已知点,圆是以的中点为圆心,为半径的圆。

(Ⅰ)若圆的切线在轴和轴上截距相等,求切线方程;

(Ⅱ)若是圆外一点,从P向圆引切线,为切点,为坐标原点,且有

,求使最小的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求$\frac{1}{|FA|}+\frac{1}{|FB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在平行四边形ABCD中,E,F分别是BC,DC的中点,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{BF}$和$\overrightarrow{DE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin$\frac{π}{6}$的值等于(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于函数$f(x)=4sin(2x+\frac{π}{3}),x∈$R有下列命题:
①函数 y=f(x)的最小正周期是π.
②函数y=f(x)的初相是$2x+\frac{π}{3}$.
③函数y=f(x)的振幅是4.
其中正确的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=4{sin^2}x+4\sqrt{3}sinxcosx+5$,若不等式f(x)≤m在$[0,\frac{π}{2}]$上有解,则实数m的最小值为(  )
A.5B.-5C.11D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$对于任意的x∈(1,+∞)恒成立,则(  )
A.a的最小值为-3B.a的最小值为-4C.a的最大值为2D.a的最大值为4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(0,-1)是抛物线C:x2=2py(p>0)准线上的一点,点F是抛物线C的焦点,点P在抛物线C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+1D.$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案