精英家教网 > 高中数学 > 题目详情
1.设复数z满足z-2i=(4-3i)•i,则$\overline{z}$=(  )
A.3+6iB.3-4iC.4+iD.3-6i

分析 利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.

解答 解:∵z-2i=(4-3i)•i,
∴z=2i+4i-3i2=3+6i,
则$\overline{z}=3-6i$.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆C:(x-1)2+y2=1(C为圆心)和直线l:x+y+1=0,P为直线l上的动点,过点P向圆C作切线,切点为A、B
(1)若Q为圆C上任意一点,求|PQ|的最小值;
(2)求切线段|PA|的最小值;
(3)求四边形PACB面积的最小值;
(4)求$\overrightarrow{PA}$$•\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某中学四名高二学生约定暑假到本市三个养老院做献爱心公益活动,如果要求每个养老院至少有一名同学,且甲乙两名同学不能到同一养老院,则这四名同学的活动安排共有(  )
A.10种B.20种C.30种D.40种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.极坐标方程ρ=5表示的曲线是以原点(0,0)为圆心,5为半径的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(2x-$\frac{1}{\sqrt{x}}$)n二项展开式系数和为64,则展开式中的x3项的系数为240(结果用数字表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.平面内两点A(0,-2),B(0,2),平面内一点C满足|CA|=2|CB|,则C的轨迹方程为3x2+3y2-20y+12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a、b∈R+,a+b=1,M=$\frac{{a}^{3}}{a+{b}^{2}}$+$\frac{{b}^{3}}{{a}^{2}+b}$,N=$\frac{{b}^{3}}{a+{b}^{2}}$+$\frac{{a}^{3}}{{a}^{2}+b}$,则M与N的大小关系是(  )
A.M>NB.M<NC.M=ND.M≤N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是$\sqrt{3}$,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求二面角D-BA1-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=a-1+\frac{1}{2}t}\end{array}\right.$(其中参数t∈R,a为常数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲线C普通方程;
(2)已知直线l曲线C交于A,B且|AB|=$\sqrt{5}$,求常数a的值.

查看答案和解析>>

同步练习册答案