精英家教网 > 高中数学 > 题目详情
6.平面内两点A(0,-2),B(0,2),平面内一点C满足|CA|=2|CB|,则C的轨迹方程为3x2+3y2-20y+12=0.

分析 设C(x,y),根据平面内两点A(0,-2),B(0,2),平面内一点C满足|CA|=2|CB|,转化为关于点C的坐标的方程,即得到了点C的轨迹方程.

解答 解:设C(x,y),则
∵平面内两点A(0,-2),B(0,2),平面内一点C满足|CA|=2|CB|,
∴x2+(y+2)2=4[x2+(y-2)2],
即3x2+3y2-20y+12=0.
故答案为:3x2+3y2-20y+12=0.

点评 本题考查解析几何中求轨迹最常见的方法,即把等式用坐标表示后,整理出要求的点的轨迹.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.圆台上、下底面半径长分别是3和4,母线长为6,则其侧面积等于42π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.f′(x0)的几何意义表示(  )
A.曲线的切线B.曲线的切线的斜率
C.曲线y=f(x)的切线的斜率D.曲线y=f(x)在点(x0,f(x0))处切线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知:在平面直角坐标系xOy中,直线$\frac{x}{2}$+y=1与x轴交于A点,与直线y=-x交于B点,过O任作一条与线段AB相交的射线,则该射线落在第二象限的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z满足z-2i=(4-3i)•i,则$\overline{z}$=(  )
A.3+6iB.3-4iC.4+iD.3-6i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.把参数方程$\left\{\begin{array}{l}{x=1-t}\\{y=1+t}\end{array}\right.$(t为参数)化为普通方程为x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.“a=-1”是“直线a2x-y+1=0与直线x-ay-2=0互相垂直”的充要条件
B.直线xsinα+y+2=0的倾斜角的取值范围是[0,$\frac{π}{4}}$]∪[$\frac{3π}{4},π}$)
C.过(x1,y1),(x2,y2)两点的所有直线的方程$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$
D.经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|ax-1|+|ax-3a|(a>0).
(1)当a=1时,求不等式f(x)≥5的解集;
(2)若不等式f(x)≥5的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=-x2+2px-1在(-∞,-1]上递增,则p的取值范围是[-1,+∞).

查看答案和解析>>

同步练习册答案