精英家教网 > 高中数学 > 题目详情
8.若函数y=-x2+2px-1在(-∞,-1]上递增,则p的取值范围是[-1,+∞).

分析 求出二次函数的对称轴,然后利用函数的单调性列出不等式,求解即可.

解答 解:函数y=-x2+2px-1的开口向下,对称轴为:x=p,
函数在(-∞,-1]上递增,
可得p≥-1.
故答案为:[-1,+∞).

点评 本题考查二次函数的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.平面内两点A(0,-2),B(0,2),平面内一点C满足|CA|=2|CB|,则C的轨迹方程为3x2+3y2-20y+12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=cos2x的周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列不是抛物线y2=4x的参数方程的是(  )
A.$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t为参数)B.$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$(t为参数)
C.$\left\{\begin{array}{l}{x={t}^{2}}\\{y=2t}\end{array}\right.$(t为参数)D.$\left\{\begin{array}{l}{x=2{t}^{2}}\\{y=2t}\end{array}\right.$(t为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=a-1+\frac{1}{2}t}\end{array}\right.$(其中参数t∈R,a为常数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲线C普通方程;
(2)已知直线l曲线C交于A,B且|AB|=$\sqrt{5}$,求常数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(a,0)(a>0),B(0,a),E(-4,0),F(0,4),设△AOB的外接圆圆心为C,点P在圆C上,使△PEF的面积为12的点P有且只有两个,则实数a的取值范围是(2,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,点P在⊙O外,PA,PB切⊙O于A,B,AD为⊙O的直径,连结AB,OP,OB,BD,则图中与∠PAB相等的角有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.五个人站成前后两排,前排站两人、后排站三人的站法种数为120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ln(${\sqrt{1+{x^2}}$+x)-$\frac{2}{{{2^x}+1}}$+1,a=f(${\frac{ln3}{3}}$),b=f(${\frac{ln5}{5}}$),c=-f(2-π),下列结论正确的是(  )
A.b>a>cB.c>a>bC.a>b>cD.c>b>a

查看答案和解析>>

同步练习册答案