| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
分析 由PA、PB分别切⊙O于点A、B,根据切线长定理,可得PA=PB,即可得∠PAB=∠PBA,由切线的性质与圆周角定理,可得∠ABD=∠OAP=90°,然后由同角的余角相等,证得∠PAB=∠D,同理可得∠PAB=∠AOP.∠BOP=∠PAB
解答 解:∵PA、PB分别切⊙O于点A、B,
∴PA=PB,OA⊥PA,
∴∠PBA=∠PAB,∠OAP=90°,
∴∠PAB+∠BAD=90°,
∵AD是⊙O的直径,
∴∠ABD=90°,
∴∠BAD+∠D=90°,
∴∠PAB=∠D;
∵∠D=∠OBD,
∴∠PAB=∠OBD.
∵OP⊥AB,
∴∠BAD+∠AOP=90°,
∴∠AOP=∠PAB.
同理∠BOP=∠PAB.
故选D.
点评 此题考查了切线的性质、等腰三角形的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | “a=-1”是“直线a2x-y+1=0与直线x-ay-2=0互相垂直”的充要条件 | |
| B. | 直线xsinα+y+2=0的倾斜角的取值范围是[0,$\frac{π}{4}}$]∪[$\frac{3π}{4},π}$) | |
| C. | 过(x1,y1),(x2,y2)两点的所有直线的方程$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$ | |
| D. | 经过点(1,1)且在x轴和y轴上截距都相等的直线方程为x+y-2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 3 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com