精英家教网 > 高中数学 > 题目详情
15.函数y═$\frac{\sqrt{2-|x-1|}}{|x|-1}$的定义域为(-1,1)∪(1,3].

分析 由根式内部的代数式大于等于0,分式的分母不为0,求解绝对值的不等式得答案.

解答 解:要使函数y═$\frac{\sqrt{2-|x-1|}}{|x|-1}$有意义,
则$\left\{\begin{array}{l}{2-|x-1|≥0}\\{|x|-1≠0}\end{array}\right.$,
解得:-1<x<1或1<x≤3.
∴函数y═$\frac{\sqrt{2-|x-1|}}{|x|-1}$的定义域为:(-1,1)∪(1,3].
故答案为:(-1,1)∪(1,3].

点评 本题考查函数的定义域及其求法,考查了绝对值不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a、b∈R+,a+b=1,M=$\frac{{a}^{3}}{a+{b}^{2}}$+$\frac{{b}^{3}}{{a}^{2}+b}$,N=$\frac{{b}^{3}}{a+{b}^{2}}$+$\frac{{a}^{3}}{{a}^{2}+b}$,则M与N的大小关系是(  )
A.M>NB.M<NC.M=ND.M≤N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{x}{1+|x|}$-m有零点,则实数m的取值范围是(  )
A.(0,1]B.(0,1)C.(-1,1)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=a-1+\frac{1}{2}t}\end{array}\right.$(其中参数t∈R,a为常数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲线C普通方程;
(2)已知直线l曲线C交于A,B且|AB|=$\sqrt{5}$,求常数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的定义域和值域:
(1)y=2${\;}^{\frac{1}{x-4}}$;
(2)y=$\sqrt{1-(\frac{1}{2})^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,点P在⊙O外,PA,PB切⊙O于A,B,AD为⊙O的直径,连结AB,OP,OB,BD,则图中与∠PAB相等的角有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)的图象的相邻对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求f($\frac{π}{8}$)的值,
(Ⅱ)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数g(x)=f(x)-m有两个零点,求m的范围,
(Ⅲ)求函数y=f(x)+f(x+$\frac{π}{4}$)的最大值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若运行如图的程序,则输出的结果是(  ) 
A.4B.9C.13D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角等于$\frac{5π}{6}$,如果|${\overrightarrow a}$|=4,|${\overrightarrow b}$|=$\sqrt{3}$,那么|2$\overrightarrow a$-$\overrightarrow b}$|=(  )
A.$\sqrt{55}$B.9C.$\sqrt{91}$D.10

查看答案和解析>>

同步练习册答案