精英家教网 > 高中数学 > 题目详情
10.求下列函数的定义域和值域:
(1)y=2${\;}^{\frac{1}{x-4}}$;
(2)y=$\sqrt{1-(\frac{1}{2})^{x}}$.

分析 由分母不为零、被开方数大于大于0求出函数的定义域,根据指数函数的性质、反比例函数的性质求出函数的值域.

解答 解:(1)函数的定义域是{x|x≠4},值域是(0,1)∪(1,+∞);
(2)由$1-(\frac{1}{2})^{x}$≥0,得x≥0,∴函数的定义域是{x|x≥0},
∵1>$1-(\frac{1}{2})^{x}$≥0,∴函数的值域是[0,1).

点评 本题考查函数的定义域和值域的求解,利用指数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.将5个人(含甲、乙)分成三个组,一组1人,另两组各2人,不同的分组数为a,甲、乙分到同一组的概率为p,则a,p的值分别为(  )
A.$a=30,p=\frac{1}{10}$B.$a=30,p=\frac{1}{5}$C.$a=15,p=\frac{1}{10}$D.$a=15,p=\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=e-x-ax(x∈R).
(Ⅰ) 当a=-1时,求函数f(x)的最小值;
(Ⅱ) 若x≥0时,f(-x)+ln(x+1)≥1,求实数a的取值范围;
(Ⅲ)求证:${e^{2-\sqrt{e}}}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴的极坐标系中,已知曲线C1的极坐标方程是ρ=$\sqrt{2}$,把C1上各点的纵坐标都压缩为原来的$\frac{{\sqrt{2}}}{2}$倍,得到曲线C2,直线l的参数方程是$\left\{\begin{array}{l}x={x_0}+\frac{{\sqrt{2}}}{2}t\\ y={y_0}+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).
(Ⅰ)写出曲线C1与曲线C2的直角坐标方程;
(Ⅱ)设M(x0,y0),直线l与曲线C2交于A,B两点,若|MA|•|MB|=$\frac{8}{3}$,求点M轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A=(x,y)|y=$\sqrt{{x}^{2}+2}$-lnx},集合B={(x,y)|y=mx+n},集合C={0,2,3},m,n∈C,则集合D={(m,n)|A∩B≠∅}中的元素有(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y═$\frac{\sqrt{2-|x-1|}}{|x|-1}$的定义域为(-1,1)∪(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x,y∈N,xy=24,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值为$\frac{1}{52}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知中心在坐标原点的椭圆C的一个顶点为(0,1),一个焦点为F(2,0).
(1)求椭圆C的方程;
(2)过点F的直线l交椭圆C于A,B,交y轴于M,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,且$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≤4-2y\\ x≥0\\ y≥0\end{array}\right.$,那么x2+y2-10x-6y的最小值为$-\frac{121}{5}$ .

查看答案和解析>>

同步练习册答案