分析 由题意,x=4,y=6或x=6,y=4时,$\frac{1}{{x}^{2}+{y}^{2}}$取得最大值.
解答 解:由题意,求$\frac{1}{{x}^{2}+{y}^{2}}$的最大值,即可求x2+y2的最小值
∵xy=24,
∴x2+y2≥2$\sqrt{24}$,x=y=2$\sqrt{6}$时,取等,
又∵x,y∈N,
∴x=4,y=6或x=6,y=4时,x2+y2取最小值52,
此时$\frac{1}{{x}^{2}+{y}^{2}}$的最大值为$\frac{1}{52}$.
故答案为:$\frac{1}{52}$.
点评 本题考查最大值的计算,考查基本不等式,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥-$\frac{1}{2}$ | B. | a>0 | C. | -$\frac{1}{2}$<a<0 | D. | -$\frac{1}{2}$<a≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 16 | C. | 30 | D. | 31 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sin$\frac{2π}{3}$)<f(cos$\frac{2π}{3}$) | B. | f(sin$\frac{π}{6}$)<f(sin$\frac{π}{3}$) | C. | f(cos$\frac{π}{3}$)<f(cos$\frac{π}{4}$) | D. | f(tan$\frac{π}{6}$)<f(tan$\frac{π}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com