分析 (1)根据题意,若am<6,而an=n2,知m=1,2,Y(a6)=2,由题设条件可知Y((a1))=1,Y((a2))=4,Y((a3))=9,Y((a4))=16,于是猜想:Y((an))=n2;
(2)由(1)可知求得f(n)=$\frac{2n}{{n}^{2}+10}$=$\frac{2}{n+\frac{10}{n}}$≤$\frac{2}{2\sqrt{n×\frac{10}{n}}}$=$\frac{\sqrt{10}}{10}$,n为正整数,分别求得f(3)及f(4)比较,即可求得f(n)的最大值.
解答 解:(1)∵am<6,而an=n2,
∴m=1,2,
∴Y(a6)=2.
∵Y(a1)=0,Y(a2)=1,Y(a3)=1,Y(a4)=1,
Y(a5)=2,Y(a6)=2,Y(a7)=2,Y(a8)=2,Y(a9)=2,
Y(a10)=3,Y(a11)=3,Y(a12)=3,Y(a13)=3,Y(a14)=3,Y(a15)=3,Y(a16)=3,
∴Y(Y(a1))=1,Y((a2))=4,Y((a3))=9,Y((a4))=16,
猜想:Y(Y(an))=n2.
(2)f(n)=$\frac{2n}{Y(Y({a}_{n}))+10}$=$\frac{2n}{{n}^{2}+10}$=,n为正整数,
∴f(n)=$\frac{2}{n+\frac{10}{n}}$≤$\frac{2}{2\sqrt{n×\frac{10}{n}}}$=$\frac{\sqrt{10}}{10}$,
当且仅当n=$\frac{10}{n}$,即n=$\sqrt{10}$时取最大值,
∵n为正整数,
∴当n=3时,f(3)=$\frac{6}{19}$,当n=4时,f(4)=$\frac{4}{13}$,
f(3)>f(4),
故n=3时,取最大值,最大值为=$\frac{6}{19}$.
点评 本题考查数列的性质和应用,基本不等式的性质,考查归纳推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5个 | B. | 6个 | C. | 7个 | D. | 8个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com