15£®ÏÂÁÐÐðÊöÖÐÕýÈ·ÃüÌâµÄ¸öÊýÓУ¨¡¡¡¡£©
£¨1£©Èôa£¬b£¬c¡ÊR£¬Ôò¡°ax2+bx+c¡Ý0¡±µÄ³ä·ÖÌõ¼þÊÇ¡°b2-4ac¡Ü0¡±
£¨2£©Èôa£¬b£¬c¡ÊR£¬Ôò¡°ab2£¾cb2¡±µÄ³äÒªÌõ¼þÊÇ¡°a£¾c¡±
£¨3£©Èôx£¬y¡ÊR£¬Âú×ãax£¼ay£¨0£¼a£¼1£©£¬Ôò$\frac{1}{{x}^{2}+1}$£¾$\frac{1}{{y}^{2}+1}$
£¨4£©Èôm£¾1£¬Ôòmx2-2£¨m+1£©x+m+3£¾0µÄ½â¼¯ÎªR£®
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

·ÖÎö £¨1£©µ±a=0£¬b=0£¬c£¼0ʱ£¬²»³ÉÁ¢£¬
£¨2£©µ±a=0ʱ£¬³ä·ÖÐÔ²»³ÉÁ¢£¬
£¨3£©¸ù¾Ý²»µÈʽµÄÐÔÖÊ£¬½áºÏ·Öʽ²»µÈʽµÄÐÔÖʽøÐÐÅжÏ
£¨4£©Çó³öÅбðʽ¡÷£¼0£¬½áºÏ²»µÈʽµÄÐÔÖʽøÐÐÅжϣ®

½â´ð ½â£º£¨1£©µ±a=0£¬b=0£¬c£¼0ʱ£¬Âú×ãb2-4ac¡Ü0£¬µ«´Ëʱax2+bx+c¡Ý0²»³ÉÁ¢£¬
¹Êa£¬b£¬c¡ÊR£¬Ôò¡°ax2+bx+c¡Ý0¡±µÄ³ä·ÖÌõ¼þÊÇ¡°b2-4ac¡Ü0¡±´íÎó£»
£¨2£©Èôab2£¾cb2£¬Ôòb¡Ù0£¬´Ëʱa£¾c£¬¼´±ØÒªÐÔ³ÉÁ¢£¬
Èôa£¾c£¬Ôòµ±b=0ʱ£¬²»µÈʽab2£¾cb2²»³ÉÁ¢£¬Ôò³ä·ÖÐÔ²»³ÉÁ¢£¬¹Ê¼´¡°ab2£¾cb2¡±µÄ³äÒªÌõ¼þÊÇ¡°a£¾c¡±´íÎó£¬
£¨3£©Èôx£¬y¡ÊR£¬Âú×ãax£¼ay£¨0£¼a£¼1£©£¬Ôòx£¾y£¬Ôòµ±x=1£¬y=-1ʱ£¬Âú×ãÌõ¼þx£¾y£¬µ«$\frac{1}{{x}^{2}+1}$£¾$\frac{1}{{y}^{2}+1}$²»³ÉÁ¢£¬
£¨4£©Èôm£¾1£¬ÔòÅбðʽ¡÷=4£¨m+1£©2-4m£¨m+3£©=4-4m£¼0£¬
Ôòmx2-2£¨m+1£©x+m+3£¾0ºã³ÉÁ¢£¬¼´²»µÈʽµÄ½â¼¯ÎªR£®¹Ê£¨4£©ÕýÈ·£¬
¹ÊÕýÈ·µÄÊÇ£¨4£©£¬
¹ÊÑ¡£ºB£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°²»µÈʽµÄÐÔÖÊ£¬ÄѶȲ»´ó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¶¨ÒåÔÚ£¨-1£¬1£©Éϵĺ¯Êýf£¨x£©=x+sinx£¬Èç¹ûf£¨1-a£©+f£¨1-a2£©£¾0£¬ÄÇôÄÜ·ñÈ·¶¨aµÄȡֵ·¶Î§£¿ÊÔ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®720B£®960C£®1200D£®1440

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÉèÕûÊýmÊÇ´Ó²»µÈʽx2-2x-8¡Ü0µÄÕûÊý½âµÄ¼¯ºÏSÖÐËæ»ú³éÈ¡µÄÒ»¸öÔªËØ£¬¼ÇËæ»ú±äÁ¿¦Î=m2£¬Ôò¦ÎµÄÊýѧÆÚÍûE£¨¦Î£©=£¨¡¡¡¡£©
A£®1B£®5C£®$\frac{14}{7}$D£®$\frac{16}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¼ÆË㣨5-5i£©+£¨-2-i£©-£¨3+4i£©=-10i£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AD=AA1=1£¬AB=2£¬µãEÔÚÀâABÉÏÒÆ¶¯£®
£¨1£©µ±EΪABµÄÖеãʱ£¬ÇóAD1ÓëÆ½ÃæECD1Ëù³É½ÇµÄÕýÏÒÖµ£»
£¨2£©µ±AEµÈÓÚºÎֵʱ£¬¶þÃæ½ÇD1-EC-DµÄ´óСΪ$\frac{¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬²àÀâSA¡Íµ×ÃæABCD£¬ÇÒSA=AB=BC=2£¬AD=1£®
£¨1£©ÇóËÄÀâÖùS-ABCDµÄÌå»ý£»
£¨2£©ÇóµãBµ½Æ½ÃæSCDµÄ¾àÀ룻
£¨3£©ÇóÃæSCDÓëÃæSABËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éèf£¨x£©=ex£¬g£¨x£©=1+lnx£¬Èô´æÔÚx1¡¢x2¡Ê[$\frac{1}{2}$£¬1]ºãÓÐ|f£¨x1£©g£¨x2£©-f£¨x2£©g£¨x1£©|¡Ýaf£¨x1+x2£©£¬ÔòaµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®e-1-£¨1-ln2£©e${\;}^{-\frac{1}{2}}$B£®ln$\frac{e}{2}$-e-1C£®ln2-e-1D£®£¨1-ln2£©e${\;}^{-\frac{1}{2}}$-e-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈôÊýÁÐ{an}Âú×㣺¶ÔÈÎÒâµÄn¡ÊN*£¬Ö»ÓÐÓÐÏÞ¸öÕýÕûÊýmʹµÃam£¼n³ÉÁ¢£¬¼ÇÕâÑùµÄmµÄ¸öÊýΪY£¨an£©£¬µÃµ½ÊýÁÐ{Y£¨an£©}£®ÀýÈ磬ÈôÊýÁÐ{an}ÊÇ1£¬2£¬3¡­£¬n£¬¡­Ê±£¬{Y£¨an£©}ÊÇ0£¬1£¬2£¬¡­n-1£¬¡­ÏÖ¶ÔÈÎÒâµÄn¡ÊN*£¬an=n2£¬ÔòY£¨a2£©=1£¬ÒòΪÂú×ãm2£¼2³ÉÁ¢£¬Ö»ÓÐm=1£¬¹ÊY£¨a2£©=1£®
£¨1£©ÇóY£¨a6£©£¬Y£¨Y£¨an£©£©£¨²»ÓÃÖ¤Ã÷£©
£¨2£©Èôf£¨n£©=$\frac{2n}{Y£¨Y£¨{a}_{n}£©£©+10}$£¬Çóf£¨n£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸