精英家教网 > 高中数学 > 题目详情
6.已知某几何体的三视图如图所示,则该几何体的体积是(  )
A.720B.960C.1200D.1440

分析 由三视图可知:该几何体是一个棱长分别为20,8,9,砍去一个角的一个三棱锥(长方体的一个角).据此即可得出体积.

解答 解:由三视图可知:
该几何体是一个棱长分别为20,8,9的长方体,
砍去一个三棱锥(长方体的一个角)的几何体.
如图:
∴该几何体的体积V=20×9×8-$\frac{1}{3}×\frac{1}{2}×$20×9×8=1200.
故选:C.

点评 本题考查空间几何体的三视图的应用,由三视图正确恢复原几何体是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,求f(x)在区间[$\frac{1}{2}$,2]上的最大值和最小值(参考数据:0.69<ln2<0.70).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2cos2x+2$\sqrt{3}$sinxcosx
(1)求f(x)的最小正周期及单调递增区间.
(2)在△ABC中,a,b,c分别是A,B,C的对边,若(a+2c)cosB=-bcosA成立,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC,O为AB的中点,DF⊥OE.
(1)求证:OE⊥FC;
(2)若AB=2,FC与平面ABEF所成角为45°时,求二面角O-CF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
韭菜6吨0.9万元0.3万元
则一年的种植总利润(总利润=总销售收入-总种植成本)最大值为48万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司为了了解用电量y(单位:度)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,数据如表:
气温x141286
用电量y22263438
(1)用电量y与气温x具有线性相关关系,y关于x的线性回归方程为y=-2x+b,求b的值;
(2)利用线性回归方程估计气温为10℃时的用电量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.第一排有5个座位,安排4个老师坐下,其中老师A必须在老师B的左边,共有60种不同的排法(结果用数字表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列叙述中正确命题的个数有(  )
(1)若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”
(2)若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
(3)若x,y∈R,满足ax<ay(0<a<1),则$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$
(4)若m>1,则mx2-2(m+1)x+m+3>0的解集为R.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+m|+|2x+1|.
(1)当m=-1时,解不等式f(x)≤3;
(2)若m∈(-1,0],求函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积的最大值.

查看答案和解析>>

同步练习册答案