精英家教网 > 高中数学 > 题目详情
17.已知f(x)=2cos2x+2$\sqrt{3}$sinxcosx
(1)求f(x)的最小正周期及单调递增区间.
(2)在△ABC中,a,b,c分别是A,B,C的对边,若(a+2c)cosB=-bcosA成立,求f(A)的取值范围.

分析 (1)利用倍角公式降幂,结合辅助角公式化积,由周期公式求得周期,再由复合函数的单调性求得函数的增区间;
(2)把已知等式利用正弦定理化边为角,求出角B,得到f(A)=2sin(2A+$\frac{π}{6}$)+1,再结合A的范围求得答案.

解答 解:(1)∵f(x)=2cos2x+2$\sqrt{3}$sinxcosx
=$1+cos2x+\sqrt{3}sin2x$=$2sin(2x+\frac{π}{6})+1$.
∴T=$\frac{2π}{2}=π$;
由$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ$,解得$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ,k∈Z$.
故单调递增区间为:[$-\frac{π}{3}+kπ,\frac{π}{6}+kπ$],k∈Z;
(2)由(a+2c)cosB=-bcosA,结合正弦定理得:(sinA+2sinC)cosB=-sinBcosA,
∴sin(A+B)=-2sinCcosB,
∴cosB=$-\frac{1}{2}$.
∵B为三角形的内角,∴B=$\frac{2π}{3}$.
∴f(A)=2sin(2A+$\frac{π}{6}$)+1,
又∵0$<A<\frac{π}{3}$,∴$\frac{π}{6}<2A+\frac{π}{6}<\frac{5π}{6}$,
∴$\frac{1}{2}<sin(2A+\frac{π}{6})≤1$.
故f(A)∈(2,3].

点评 本题考查三角函数中的恒等变换应用,训练了y=Asin(ωx+φ)型函数的性质的求法,考查了正弦定理的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax2-bx-1(a,b∈R,e为自然对数的底数).
(1)若对任意a∈[0,1],总存在x∈[1,2],使得f(x)≤0成立,求b的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为(  )
A.若$\frac{sinA}{a}=\frac{cosB}{b}=\frac{cosC}{c}$,则A=90°
B.$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinB
D.若sin2A=sin2B,则a=b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在(-1,1)上的函数f(x)=x+sinx,如果f(1-a)+f(1-a2)>0,那么能否确定a的取值范围?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一艘客轮自北向南航行,上午8时在灯塔P的北偏东15°位置,且距离灯塔34海里,下午2时在灯塔P的东南方向,则这只船航行的速度为$\frac{17\sqrt{6}}{6}$海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设0<a<1,已知函数f(x)=$\left\{\begin{array}{l}cosπx,0<x≤a\\ 8{x^3},a<x≤1\end{array}$,若存在实数b使函数g(x)=f(x)-b有两个零点,则a的取值范围是(  )
A.$({0,\frac{1}{4}})$B.$({0,\frac{1}{2}})$C.(0,1)D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow{a}$=(1,x,2),$\overrightarrow{b}$=(2,-1,y),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数2x+y的值为(  )
A.5B.4C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图如图所示,则该几何体的体积是(  )
A.720B.960C.1200D.1440

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,且SA=AB=BC=2,AD=1.
(1)求四棱柱S-ABCD的体积;
(2)求点B到平面SCD的距离;
(3)求面SCD与面SAB所成二面角的余弦值.

查看答案和解析>>

同步练习册答案