精英家教网 > 高中数学 > 题目详情
12.一艘客轮自北向南航行,上午8时在灯塔P的北偏东15°位置,且距离灯塔34海里,下午2时在灯塔P的东南方向,则这只船航行的速度为$\frac{17\sqrt{6}}{6}$海里/小时.

分析 根据方向角的定义即可求得∠APB=120°,求出PB,在△ABP中利用余弦定理求得AB然后求解速度.

解答 解:由题意P到AB的距离为:34cos75°,
PB=34$\sqrt{2}$cos75°=$\frac{34\sqrt{2}(\sqrt{6}-\sqrt{2})}{4}$=17$\sqrt{3}$-17.
在△PAB中,AB=$\sqrt{P{A}^{2}+P{B}^{2}-2PA•PBcos120°}$=$\sqrt{3{4}^{2}+(17\sqrt{3}-17)^{2}+34×(17\sqrt{3}-17)}$=17$\sqrt{6}$.
这只船航行的速度为:$\frac{17\sqrt{6}}{6}$海里/小时.
故答案为:$\frac{{17\sqrt{6}}}{6}$.

点评 本题考查了方向角的定义,以及三角形内角和定理,余弦定理的应用,理解方向角的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x<1}\\{(x+a)(x+2a),x≥1}\end{array}\right.$,若f(x)恰有2个零点,则实数a的范围是$(-∞,-2]∪(-1,-\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正方体ABCD-A1B1C1D1中,异面直线BD1与AC所成角的度数为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某医院用甲、乙两种原材料为手术后病人配制营养餐,甲种原料每克含蛋白质5个单位和维生素C 10个单位,售价2元;乙种原料每克含蛋白质6个单位和维生素C 20个单位,售价3元;若病人每餐至少需蛋白质50个单位、维生素C 140个单位,在满足营养要求的情况下最省的费用为23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.命题p:“?x∈[0,$\frac{π}{4}$],tanx≤m”恒成立,命题q:“f(x)=x2+m,g(x)=($\frac{1}{2}$)x-m,对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2)成立”,若p∧q为假,p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2cos2x+2$\sqrt{3}$sinxcosx
(1)求f(x)的最小正周期及单调递增区间.
(2)在△ABC中,a,b,c分别是A,B,C的对边,若(a+2c)cosB=-bcosA成立,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{x+1}-1,x>a\\-{x^2}-6x-5,x≤a\end{array}$,若函数f(x)在定义域上有三个零点,则实数a的取值范围是(  )
A.(-1,+∞)B.[0,+∞)C.[-1,0]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
韭菜6吨0.9万元0.3万元
则一年的种植总利润(总利润=总销售收入-总种植成本)最大值为48万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:函数f(x)=ln(x2+(m-3)x+1)的定义域为R;命题q:方程x2=mx-1有两个不相等的正实根.若命题p或q为真命题,命题p且q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案