分析 有意义函数f(x)=x+sinx且定义域(-1,1),并且此函数利用结论已得到其为奇函数,且为在定义域内为单调递增函数,所以f(1-a)+f(1-a2)>0?f(1-a)>f(a2-1),然后进行求解即可.
解答 解:能确定a的取值范围,理由如下:
由f(x)=x+sinx且定义域(-1,1),
求导得:f′(x)=1+cosx≥0在定义域上恒成立,
所以函数在定义域上为单调递增函数,
又因为y=x与y=-sinx均为奇函数,所以其和为奇函数,
所以f(1-a)+f(1-a2)>0?f(1-a)>f(a2-1),
所以$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<{a}^{2}-1<1}\\{1-a>{a}^{2}-1}\end{array}\right.$,
解得0<a<1,
点评 此题考查了利用函数的单调性及奇偶性求解抽象函数的不等式,还考查了不等式的求解及集合的交集.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}-\sqrt{2}$ | B. | $\frac{5}{4}+\sqrt{2}$ | C. | $\frac{5}{2}-\sqrt{2}$ | D. | $\frac{5}{2}+\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com