精英家教网 > 高中数学 > 题目详情
3.设整数m是从不等式x2-2x-8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望E(ξ)=(  )
A.1B.5C.$\frac{14}{7}$D.$\frac{16}{7}$

分析 先解不等式x2-2x-8≤0的整数解的集合S,再由随机变量ξ=m2,求出分布列,用公式求出期望.

解答 解:由x2-2x-8≤0得-2≤x≤4,符合条件的整数解的集合S={-2,-1,0,1,2,3,4}
∵ξ=m2,故变量可取的值分别为0,1,4,9,16,
相应的概率分别为$\frac{1}{7}$,$\frac{2}{7}$,$\frac{2}{7}$,$\frac{1}{7}$,$\frac{1}{7}$
∴ξ的数学期望Eξ=0×$\frac{1}{7}$+1×$\frac{2}{7}$+4×$\frac{2}{7}$+9×$\frac{1}{7}$+16×$\frac{1}{7}$=5.
故选:B.

点评 本题的考点是离散型随机变量的期望与方差,主要考查随机变量的期望与方差,解题的关键是理解所研究的事件类型确定求概率的方法,有公式求出概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若复数z=(-2+a)+3i(a∈R)是纯虚数,则a(1+i)-4i等于(  )
A.2+2iB.2-2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC,O为AB的中点,DF⊥OE.
(1)求证:OE⊥FC;
(2)若AB=2,FC与平面ABEF所成角为45°时,求二面角O-CF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司为了了解用电量y(单位:度)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,数据如表:
气温x141286
用电量y22263438
(1)用电量y与气温x具有线性相关关系,y关于x的线性回归方程为y=-2x+b,求b的值;
(2)利用线性回归方程估计气温为10℃时的用电量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.第一排有5个座位,安排4个老师坐下,其中老师A必须在老师B的左边,共有60种不同的排法(结果用数字表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将5个人(含甲、乙)分成三个组,一组1人,另两组各2人,不同的分组数为a,甲、乙分到同一组的概率为p,则a,p的值分别为(  )
A.$a=30,p=\frac{1}{10}$B.$a=30,p=\frac{1}{5}$C.$a=15,p=\frac{1}{10}$D.$a=15,p=\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列叙述中正确命题的个数有(  )
(1)若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”
(2)若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
(3)若x,y∈R,满足ax<ay(0<a<1),则$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$
(4)若m>1,则mx2-2(m+1)x+m+3>0的解集为R.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x)+$\frac{m}{1+x}$(m∈R).
(1)若函数f(x)的图象在x轴上方,求m的取值范围;
(2)若对任意的正整数n都有(1+$\frac{1}{n}$)n-a≥e成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A=(x,y)|y=$\sqrt{{x}^{2}+2}$-lnx},集合B={(x,y)|y=mx+n},集合C={0,2,3},m,n∈C,则集合D={(m,n)|A∩B≠∅}中的元素有(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

同步练习册答案