精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|-3<x<3},B={-1<x≤5},则A∩B=(  )
A.(-3,-1)B.(-3,5]C.(3,5]D.(-1,3)

分析 由A与B,求出A与B的交集即可.

解答 解:∵A=(-3,3),B=(-1,5],
∴A∩B=(-1,3),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设f(x)=ex,g(x)=1+lnx,若存在x1、x2∈[$\frac{1}{2}$,1]恒有|f(x1)g(x2)-f(x2)g(x1)|≥af(x1+x2),则a的最大值为(  )
A.e-1-(1-ln2)e${\;}^{-\frac{1}{2}}$B.ln$\frac{e}{2}$-e-1C.ln2-e-1D.(1-ln2)e${\;}^{-\frac{1}{2}}$-e-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为Y(an),得到数列{Y(an)}.例如,若数列{an}是1,2,3…,n,…时,{Y(an)}是0,1,2,…n-1,…现对任意的n∈N*,an=n2,则Y(a2)=1,因为满足m2<2成立,只有m=1,故Y(a2)=1.
(1)求Y(a6),Y(Y(an))(不用证明)
(2)若f(n)=$\frac{2n}{Y(Y({a}_{n}))+10}$,求f(n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从甲地到乙地有3条路可选择,从乙地到丙地有2条路可选择,从丙地到丁地有5条路可选择,那么从甲地经过乙、再过丙、最后到丁地可选择的旅行方式的不同种数为(  )
A.10B.16C.30D.31

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={0,1,2},B={1,2,3},则A∩B=(  )
A.{1,2,3}B.{1,2}C.{0,1,1,2,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)满足f(x)=-f(x+1),当x∈[1,3]时,f(x)=1-2|2-x|,则(  )
A.f(sin$\frac{2π}{3}$)<f(cos$\frac{2π}{3}$)B.f(sin$\frac{π}{6}$)<f(sin$\frac{π}{3}$)C.f(cos$\frac{π}{3}$)<f(cos$\frac{π}{4}$)D.f(tan$\frac{π}{6}$)<f(tan$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2ωx-$\sqrt{3}$cos2ωx(ω>0),且y=f(x)的最小正周期为π.
(1)求函数f(x)的单调递增区间;
(2)已知△ABC的内角A、B、C的对边分别为a,b,c,角C为锐角,且f(C)=$\sqrt{3}$,c=3,sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边经过点P(-3,4),则tan2α=(  )
A.$\frac{24}{7}$B.$\frac{8}{3}$C.-$\frac{8}{3}$D.-$\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.
(1)现从这20件产品中任意抽取2件,记不合格的产品数为X,求X的分布列及数学期望;
(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案