精英家教网 > 高中数学 > 题目详情
14.从甲地到乙地有3条路可选择,从乙地到丙地有2条路可选择,从丙地到丁地有5条路可选择,那么从甲地经过乙、再过丙、最后到丁地可选择的旅行方式的不同种数为(  )
A.10B.16C.30D.31

分析 从甲地到乙地有3条路,所以有3种选择;从乙地到丙地有2条路,所以有2种选择;从丙地到丁地有5条路,所以有5种选择;根据乘法原理可得结论.

解答 解:根据分析可得,3×2×5=30(种),
故选:C

点评 本题要从乘法原理去考虑问题;即做一件事情,完成它需要分成n个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,…,做第n步有Mn种不同的方法,那么完成这件事就有M1×M2×…×Mn种不同的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x)+$\frac{m}{1+x}$(m∈R).
(1)若函数f(x)的图象在x轴上方,求m的取值范围;
(2)若对任意的正整数n都有(1+$\frac{1}{n}$)n-a≥e成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A=(x,y)|y=$\sqrt{{x}^{2}+2}$-lnx},集合B={(x,y)|y=mx+n},集合C={0,2,3},m,n∈C,则集合D={(m,n)|A∩B≠∅}中的元素有(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x,y∈N,xy=24,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值为$\frac{1}{52}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式lg(a2-x2)<2lg(2x+a)(a>0)的解集是(0,a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知中心在坐标原点的椭圆C的一个顶点为(0,1),一个焦点为F(2,0).
(1)求椭圆C的方程;
(2)过点F的直线l交椭圆C于A,B,交y轴于M,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,且$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|-3<x<3},B={-1<x≤5},则A∩B=(  )
A.(-3,-1)B.(-3,5]C.(3,5]D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左、右焦点分别为F1、F2,过F1的直线交椭圆于A、B两点,△AF1F2的周长为6.
(1)求椭圆C的方程;
(2)当直线AB的斜率为1时,求△F2AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月投递的快递件数记录结果中分别随机抽取8天的数据如下:
甲公司某员工A:32    33   33    35   36   39   33    41
乙公司某员工B:42    36   36    34   37   44   42     36
(I)根据两组数据完成甲、乙两个快递公司某员工A和某员工B投递快递件数的茎叶图,并通过茎叶图,对员工A和员工B投递快递件数作比较,写出一个统计结论:

统计结论:通过茎叶图可以看出,乙公司某员工B投递快递件数的平均值高于甲公司某员工A投递快递件数的平均值
(II)请根据甲公司员工A和乙公司员工B分别随机抽取的8天投递快递件数,试估计甲公司员工比乙公司员工该月投递快递件数多的概率.

查看答案和解析>>

同步练习册答案