分析 (1)利用离心率,椭圆的定义,列出方程组,即可求的a、b和c的值,即可求得椭圆C的方程;
(2)求得焦点坐标,求得AB的直线方程,代入椭圆方程,求得关于x的一元二次方程,由韦达定理求得x1+x2,x1•x2,由弦长公式及点到直线的距离公式求得丨AB丨和d,由三角形面积公式即可求得△F2AB的面积.
解答 解:(1)由离心率e=$\frac{c}{a}$=$\frac{1}{2}$,
a=2c,
∵△AF1F2的周长为6,
即2a+2c=6,即a+c=3,
即可求得a=2,c=1,
b2=a2-c2=3
故椭圆C的方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由(1)可知焦点F1(-1,0),
直线AB的方程:y=x+1,
将直线方程代入椭圆方程得:
7x2+8x-8=0,
由x1+x2=-$\frac{8}{7}$,x1•x2=-$\frac{8}{7}$
由弦长公式丨AB丨=$\sqrt{1+1}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,
=$\sqrt{2}$×$\frac{12\sqrt{2}}{7}$,
=$\frac{24}{7}$,
F2到直线的距离为d=$\frac{丨0-1-1丨}{\sqrt{1+1}}$=$\sqrt{2}$,
△F2AB的面积S=$\frac{1}{2}$×d×丨AB丨=$\frac{1}{2}$×$\sqrt{2}$×$\frac{24}{7}$=$\frac{12\sqrt{2}}{7}$.
点评 本题考查椭圆的性质,直线与圆锥曲线的位置关系,考查根与系数的关系、弦长公式、点到直线的距离公式,三角形的面积公式,考查转化思想,推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a≥-$\frac{1}{2}$ | B. | a>0 | C. | -$\frac{1}{2}$<a<0 | D. | -$\frac{1}{2}$<a≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 16 | C. | 30 | D. | 31 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sin$\frac{2π}{3}$)<f(cos$\frac{2π}{3}$) | B. | f(sin$\frac{π}{6}$)<f(sin$\frac{π}{3}$) | C. | f(cos$\frac{π}{3}$)<f(cos$\frac{π}{4}$) | D. | f(tan$\frac{π}{6}$)<f(tan$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{24}{7}$ | B. | $\frac{8}{3}$ | C. | -$\frac{8}{3}$ | D. | -$\frac{24}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com