精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{ax-1}{x+2}$-e-(x+2)恰有两个零点,则实数a的取值范围是(  )
A.a≥-$\frac{1}{2}$B.a>0C.-$\frac{1}{2}$<a<0D.-$\frac{1}{2}$<a≤0

分析 构造函数,作出函数的图象,利用函数f(x)恰有两个零点,求出实数a的取值范围.

解答 解:f(x)=$\frac{ax-1}{x+2}$-e-(x+2)恰有两个零点,
则$\frac{ax-1}{x+2}$-e-(x+2)=0有两个解,
即ax-1=(x+2)e-(x+2)有两个解
令g(x)=ax-1,且过定点(0,-1)
h(x)=(x+2)e-(x+2)
则h′(x)=(-x-1)e-(x+2),
x<-1时,h′(x)>0,x>-1时,h′(x)<0,
图象如图所示,

∴当a>0时图象有两个交点,
∴实数a的取值范围是a>0,
故选:B.

点评 本题考查函数的零点,考查导数知识的运用,正确作出函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某公司为了了解用电量y(单位:度)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,数据如表:
气温x141286
用电量y22263438
(1)用电量y与气温x具有线性相关关系,y关于x的线性回归方程为y=-2x+b,求b的值;
(2)利用线性回归方程估计气温为10℃时的用电量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x)+$\frac{m}{1+x}$(m∈R).
(1)若函数f(x)的图象在x轴上方,求m的取值范围;
(2)若对任意的正整数n都有(1+$\frac{1}{n}$)n-a≥e成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=e-x-ax(x∈R).
(Ⅰ) 当a=-1时,求函数f(x)的最小值;
(Ⅱ) 若x≥0时,f(-x)+ln(x+1)≥1,求实数a的取值范围;
(Ⅲ)求证:${e^{2-\sqrt{e}}}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+m|+|2x+1|.
(1)当m=-1时,解不等式f(x)≤3;
(2)若m∈(-1,0],求函数f(x)=|x+m|+|2x+1|的图象与直线y=3围成的多边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴的极坐标系中,已知曲线C1的极坐标方程是ρ=$\sqrt{2}$,把C1上各点的纵坐标都压缩为原来的$\frac{{\sqrt{2}}}{2}$倍,得到曲线C2,直线l的参数方程是$\left\{\begin{array}{l}x={x_0}+\frac{{\sqrt{2}}}{2}t\\ y={y_0}+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).
(Ⅰ)写出曲线C1与曲线C2的直角坐标方程;
(Ⅱ)设M(x0,y0),直线l与曲线C2交于A,B两点,若|MA|•|MB|=$\frac{8}{3}$,求点M轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A=(x,y)|y=$\sqrt{{x}^{2}+2}$-lnx},集合B={(x,y)|y=mx+n},集合C={0,2,3},m,n∈C,则集合D={(m,n)|A∩B≠∅}中的元素有(  )
A.5个B.6个C.7个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x,y∈N,xy=24,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值为$\frac{1}{52}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左、右焦点分别为F1、F2,过F1的直线交椭圆于A、B两点,△AF1F2的周长为6.
(1)求椭圆C的方程;
(2)当直线AB的斜率为1时,求△F2AB的面积.

查看答案和解析>>

同步练习册答案