精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)的图象的相邻对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求f($\frac{π}{8}$)的值,
(Ⅱ)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数g(x)=f(x)-m有两个零点,求m的范围,
(Ⅲ)求函数y=f(x)+f(x+$\frac{π}{4}$)的最大值及对应的x的值.

分析 利用两角差的正弦化简,再由已知求得ω与φ的值,可得函数f(x)的解析式.
(Ⅰ)在函数解析式中取x=$\frac{π}{8}$求f($\frac{π}{8}$)的值;
(Ⅱ)作出函数f(x)=2cos2x,x∈[-$\frac{π}{6}$,$\frac{π}{3}$]的图象,数形结合可得函数g(x)=f(x)-m有两个零点的实数m的范围;
(Ⅲ)求出函数y=f(x)+f(x+$\frac{π}{4}$),利用辅助角公式化积后可得函数的最大值及对应的x的值.

解答 解:f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-$\frac{π}{6}$).
∵函数y=f(x)的图象的相邻对称轴之间的距离为$\frac{π}{2}$,
∴$\frac{T}{2}=\frac{π}{2}$,即T=π,则$ω=\frac{2π}{T}=\frac{2π}{π}=2$.
∴f(x)=2sin(2x+φ-$\frac{π}{6}$).
又f(x)为偶函数,∴φ-$\frac{π}{6}$=$\frac{π}{2}+kπ$,即φ=$\frac{2π}{3}+kπ$,k∈Z.
∵0<φ<π,∴φ=$\frac{2π}{3}$,
则f(x)=2sin(2x+$\frac{2π}{3}$-$\frac{π}{6}$)=2sin(2x+$\frac{π}{2}$)=2cos2x.
(Ⅰ)f($\frac{π}{8}$)=2cos(2×$\frac{π}{8}$)=2cos$\frac{π}{4}$=2×$\frac{\sqrt{2}}{2}=\sqrt{2}$;
(Ⅱ)作出函数f(x)=2cos2x,x∈[-$\frac{π}{6}$,$\frac{π}{3}$]的图象如图,
要使函数g(x)=f(x)-m有两个零点,则m的范围为[1,2);
(Ⅲ)y=f(x)+f(x+$\frac{π}{4}$)=2cos2x+2cos(2x+$\frac{π}{2}$)=-2sin2x+2cos2x=-2$\sqrt{2}sin(2x-\frac{π}{4})$.
当2x-$\frac{π}{4}$=-$\frac{π}{2}+2kπ$,即x=$-\frac{π}{8}+kπ$,k∈Z时,函数y=f(x)+f(x+$\frac{π}{4}$)取最大值$2\sqrt{2}$.

点评 本题考查三角函数中的恒等变换应用,考查了y=Asin(ωx+φ)型函数的图象和性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.有四辆不同特警车准备进驻四个编号为1,2,3,4的人群聚集地,其中有一个地方没有特警车的方法共144种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴的极坐标系中,已知曲线C1的极坐标方程是ρ=$\sqrt{2}$,把C1上各点的纵坐标都压缩为原来的$\frac{{\sqrt{2}}}{2}$倍,得到曲线C2,直线l的参数方程是$\left\{\begin{array}{l}x={x_0}+\frac{{\sqrt{2}}}{2}t\\ y={y_0}+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).
(Ⅰ)写出曲线C1与曲线C2的直角坐标方程;
(Ⅱ)设M(x0,y0),直线l与曲线C2交于A,B两点,若|MA|•|MB|=$\frac{8}{3}$,求点M轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y═$\frac{\sqrt{2-|x-1|}}{|x|-1}$的定义域为(-1,1)∪(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x,y∈N,xy=24,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值为$\frac{1}{52}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x∈R,用[x]表示不超过x的最大整数,如[-1.5]=2,[5.1]=5,设{x}=x-[x],则对函数f(x)={x},下列说法正确的是①②④
①定义域是R,值域为[0,1);
②它是以1为周期的周期函数;
③若方程f(x)=kx+k有三个不同的根,则实数k的取值范围是(-$\frac{1}{3}$,-$\frac{1}{4}$]∪[$\frac{1}{4}$,$\frac{1}{3}$);
④若n≤x1≤x2<n+1(n∈Z),则f(x1)≤f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知中心在坐标原点的椭圆C的一个顶点为(0,1),一个焦点为F(2,0).
(1)求椭圆C的方程;
(2)过点F的直线l交椭圆C于A,B,交y轴于M,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,且$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(1)若A、B两点的纵坐标分别为$\frac{4}{5}$、$\frac{12}{13}$,求cosα和cosβ的值;
(2)在(1)的条件下,求cos(β-α)的值;
(3)在(1)的条件下,求$\frac{sin2α-co{s}^{2}α}{1+cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》、《水浒传》、《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案