精英家教网 > 高中数学 > 题目详情
16.如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(1)若A、B两点的纵坐标分别为$\frac{4}{5}$、$\frac{12}{13}$,求cosα和cosβ的值;
(2)在(1)的条件下,求cos(β-α)的值;
(3)在(1)的条件下,求$\frac{sin2α-co{s}^{2}α}{1+cos2α}$的值.

分析 (1)直接由三角函数的定义写出sinα,sinβ的值,由同角三角函数的基本关系式求解cosα,cosβ的值;
(2)利用cos(β-α)=cosβcosα+sinβsinα,直接求解即可.
(3)利用二倍角公式化简表达式,代入求解即可.

解答 解:(1)根据三角函数的定义,得sinα=$\frac{4}{5}$,cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$,
sinβ=$\frac{12}{13}$,又β是钝角,∴cosβ=-$\sqrt{1-si{n}^{2}β}$=-$\frac{5}{13}$;
(2)∵cos(β-α)=cosβcosα+sinβsinα=$-\frac{5}{13}×\frac{3}{5}+\frac{12}{13}×\frac{4}{5}$=$\frac{33}{65}$.
(3)$\frac{sin2α-co{s}^{2}α}{1+cos2α}$=$\frac{2sinαcosα-co{s}^{2}α}{2co{s}^{2}α}$=$\frac{2×\frac{4}{5}-\frac{3}{5}}{2×\frac{3}{5}}$=$\frac{5}{6}$.

点评 本题考查了任意角的三角函数的定义,考查了二倍角公式,以及两角和与差的三角函数,同角三角函数的基本关系式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{x}{1+|x|}$-m有零点,则实数m的取值范围是(  )
A.(0,1]B.(0,1)C.(-1,1)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)的图象的相邻对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求f($\frac{π}{8}$)的值,
(Ⅱ)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数g(x)=f(x)-m有两个零点,求m的范围,
(Ⅲ)求函数y=f(x)+f(x+$\frac{π}{4}$)的最大值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若运行如图的程序,则输出的结果是(  ) 
A.4B.9C.13D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)满足f(x)=-f(x+1),当x∈[1,3]时,f(x)=1-2|2-x|,则(  )
A.f(sin$\frac{2π}{3}$)<f(cos$\frac{2π}{3}$)B.f(sin$\frac{π}{6}$)<f(sin$\frac{π}{3}$)C.f(cos$\frac{π}{3}$)<f(cos$\frac{π}{4}$)D.f(tan$\frac{π}{6}$)<f(tan$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.阅读如图所示的程序框图,运行相应的程序,输出的T的值为(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式|x+3|+|x-2|≥7的解集为{x|x≤-4,或x≥3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角等于$\frac{5π}{6}$,如果|${\overrightarrow a}$|=4,|${\overrightarrow b}$|=$\sqrt{3}$,那么|2$\overrightarrow a$-$\overrightarrow b}$|=(  )
A.$\sqrt{55}$B.9C.$\sqrt{91}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若tanθ=$\sqrt{2}$,那么tan2θ是(  )
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{2}{3}\sqrt{2}$D.$\frac{2}{3}\sqrt{2}$

查看答案和解析>>

同步练习册答案