精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f[f($\frac{2015}{2}$)]的值是(  )
A.$\frac{2015}{2}$B.1C.0D.2015

分析 对任意实数x都有xf(x+1)=(1+x)f(x),令x=-$\frac{1}{2}$可得:$f(\frac{1}{2})$=0.令x=0,可得f(0)=0.x≠0时,f(x+1)=$\frac{x+1}{x}$f(x).可得$f(\frac{2013}{2}+1)$=2015$f(\frac{1}{2})$,即可得出.

解答 解:对任意实数x都有xf(x+1)=(1+x)f(x),
∴令x=-$\frac{1}{2}$可得:$-\frac{1}{2}f(\frac{1}{2})$=$\frac{1}{2}$$f(\frac{1}{2})$,可得$f(\frac{1}{2})$=0.
令x=0,则0f(1)=f(0),可得f(0)=0.
∴x≠0时,f(x+1)=$\frac{x+1}{x}$f(x).
∴$f(\frac{1}{2}+1)$=3$f(\frac{1}{2})$,$f(\frac{3}{2}+1)$=5$f(\frac{1}{2})$.
∴$f(\frac{2013}{2}+1)$=2015$f(\frac{1}{2})$=0.
∴f[f($\frac{2015}{2}$)]=f(0)=0.
故选:0.

点评 本题考查了函数的周期性与奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知点A(0,-2),B(0,4),动点P(x,y)满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=y2-8.
(1)求动点P的轨迹方程;
(2)设(1)中所求轨迹与直线y=x+2交于C,D两点,设C( x1,y1),D( x2,y2),计算 x1 x2,y1 y2的值;
(3)求证:OC⊥OD(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为1时,直线与双曲线左、右两支各有一个交点;当直线斜率为2时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{5}$)C.($\sqrt{2}$,2)D.($\sqrt{2}$,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,E为PD的中点,AB=2,∠ABC=$\frac{π}{3}$.
(1)求证:PB∥平面AEC;
(2)若三棱锥P-AEC的体积为1,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1+kx}{{ln({x+1})}}$,其中k∈R.
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)若不等式xf(x)>x+1对任意x∈(-1,0)∪(0,+∞)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\frac{x^2}{{1+{x^2}}}$,则f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f(1)+f(2)+…+f(2016)=(  )
A.4031B.$\frac{4031}{2}$C.4032D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设x、y为实数.且xy=3,求x$\sqrt{\frac{y}{x}}$$+y\sqrt{\frac{x}{y}}$的值±2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x2-ax+1)ex(其中e为自然对数的底数).
(1)设f(x)=xlnx-x2+$\frac{f(x)}{e^x}$,若a<$\frac{3}{2}$,求f(x)在区间[1,e]上的最大值;
(2)定义:若函数G(x)在区间[s,t](s<t)上的取值范围为[s,t],则称区间[s,t]为函数G(x)的“域同区间”,若a=2,求函数f (x)在(1,+∞)上所有符合条件的“域同区间”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4,x≥0}\\{x+4,x<0}\end{array}\right.$.
(1)求f(f(-2));
(2)画出函数的图象并求出函数f(x)在区间(-2,2)上的值域.

查看答案和解析>>

同步练习册答案