【题目】已知函数f(x)=
(x∈R),给出下面四个命题:
①函数f(x)的图象一定关于某条直线对称;
②函数f(x)在R上是周期函数;
③函数f(x)的最大值为
;
④对任意两个不相等的实数
,都有
成立.
其中所有真命题的序号是 .
科目:高中数学 来源: 题型:
【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期和单调增区间;
(2)当x∈[
,
]时,求函数f(x)的最大值,最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).
![]()
(Ⅰ)根据茎叶图中的数据完成
列联表,并判断能否有
的把握认为孩子的幸福感强与是否是留守儿童有关?
![]()
(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:
; 附表:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【河南省部分重点中学2017届高三上学期第一次联考】在平面直角坐标系
中,已知圆
和圆
.
(Ⅰ)若直线
过点
,且被圆
截得的弦长为
,求直线
的方程;
(Ⅱ)设
为平面直角坐标系上的点,满足:存在过点
的无穷多对相互垂直的直线
和
,它们分别与
圆
和
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点![]()
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组
,第二组
,…,第五组
,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为
.
![]()
(Ⅰ)求
的值,并求这50名同学心率的平均值;
(Ⅱ)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中![]()
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 20 | ||
艺术生 | 30 | ||
合计 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R的奇函数
满足
,且
时,
,下面四种说法①
;②函数
在[-6,-2]上是增函数;③函数
关于直线
对称;④若
,则关于
的方程
在[-8,8]上所有根之和为-8,其中正确的序号__________。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com