精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=(1-$\frac{a}{x}$)ex(x>0),其中e为自然对数的底数.
(1)当a=2时,求曲线y=f(x)在(1,f(1))处的切线与坐标轴围成的面积;
(2)求函数f(x)的单调区间.

分析 (1)求出函数的导数,求得切线的斜率和切点,可得切线的方程,求得与x,y轴的交点,由三角形的面积公式,计算即可得到所求值;
(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可.

解答 解:(1)f(x)=(1-$\frac{2}{x}$)ex的导数为f′(x)=ex($\frac{2}{{x}^{2}}$+1-$\frac{2}{x}$),
可得在(1,-e)处的切线的斜率为e,
切线的方程为y+e=e(x-1),即为y=ex-2e,
令x=0,可得y=-2e;令y=0,可得x=2,
则切线与坐标轴围成的面积为:$\frac{1}{2}$×2×2e=2e;
(2)∵f(x)=(1-$\frac{a}{x}$)ex(x>0),
∴f′(x)=$\frac{{(x}^{2}-ax+a{)e}^{x}}{{x}^{2}}$,
令g(x)=x2-ax+a=${(x-\frac{a}{2})}^{2}+\frac{4a{-a}^{2}}{4}$,(x>0),
①0≤a≤4时,g(x)≥0,即f′(x)≥0,f(x)在(0,+∞)递增;
②a<0时,令g(x)>0,解得:x>$\frac{a+\sqrt{{a}^{2}-4a}}{2}$,
令g(x)<0,解得:0<x<$\frac{a+\sqrt{{a}^{2}-4a}}{2}$,
∴f(x)在(0,$\frac{a+\sqrt{{a}^{2}-4a}}{2}$)递减,在($\frac{a+\sqrt{{a}^{2}-4a}}{2}$,+∞)递增;
③a>4时,令g(x)>0,解得:x>$\frac{a+\sqrt{{a}^{2}-4a}}{2}$或0<x<$\frac{a-\sqrt{{a}^{2}-4a}}{2}$,
令g(x)<0,解得:$\frac{a-\sqrt{{a}^{2}-4a}}{2}$<x<$\frac{a+\sqrt{{a}^{2}-4a}}{2}$,
∴f(x)在(0,$\frac{a-\sqrt{{a}^{2}-4a}}{2}$)递增,在($\frac{a-\sqrt{{a}^{2}-4a}}{2}$,$\frac{a+\sqrt{{a}^{2}-4a}}{2}$)递减,在($\frac{a+\sqrt{{a}^{2}-4a}}{2}$,+∞)递增.

点评 本题考查了函数的单调性,求切线的方程,考查导数的几何意义,直线方程的运用,考查运算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=4,C=$\frac{π}{3}$.
(1)若△ABC的面积等于4$\sqrt{3}$,求a,b;
 (2)若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0.
①f(1)=0;  
②f($\frac{m}{n}$)=f(m)-f(n);
③若f(2)=1,不等式f(x+2)-f(2x)>2的解集为(0,$\frac{2}{7}$);    
④f(x)在(0,+∞)上单调递减;
⑤f($\frac{m+n}{2}$)≥$\frac{f(m)+f(n)}{2}$.
以上说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}$(t为参数),当t=1时,曲线C1上的点为A,当t=-1时,曲线C1上的点为B.以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=$\frac{6}{\sqrt{4+5sin^2θ}}$.
(1)求A、B的极坐标;
(2)设M是曲线C2上的动点,求|MA|2+|MB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为$2\sqrt{3},OA=OM$,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x-asinx,x∈[0,$\frac{π}{2}$].
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)若f(x)≤cosx,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ax-(a+1)lnx,其中a≥-1,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),曲线C2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ-$\frac{π}{4}$,θ=φ+$\frac{π}{2}$,与曲线C1分别交异于极点O的四点A、B、C、D.
(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;
(Ⅱ)求|OA|•|OC|+|OB|•|OD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.极坐标系中,若ρ>0,则曲线ρ=2θ+1与ρθ=1的交点到极点的距离为2.

查看答案和解析>>

同步练习册答案