分析 (1)由已知利用三角形面积公式可求ab=16,利用余弦定理可得a2+b2=32,联立即可解得a,b的值;
(2)由sinB=2sinA,利用正弦定理可得b=2a,利用余弦定理可求a,b的值,利用三角形面积公式即可计算得解.
解答 解:(1)∵S=$\frac{1}{2}$absinC=4$\sqrt{3}$,C=$\frac{π}{3}$,
∴ab=16,
又∵c=4,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴a2+b2=32,
∴a=b=4.
(2)∵sinB=2sinA,
∴b=2a,
又∵cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴a=$\frac{4\sqrt{3}}{3}$,b=$\frac{8\sqrt{3}}{3}$.
∴S=$\frac{1}{2}$absinC=$\frac{8\sqrt{3}}{3}$.
点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {(${\frac{2}{3}$,$\frac{5}{3}})$)} | B. | ($\frac{2}{3}$,$\frac{5}{3}}$) | C. | {${\frac{2}{3}$,$\frac{5}{3}}$} | D. | {(${\frac{2}{3}$,$\frac{5}{3}}$),(-$\frac{2}{3}$,-$\frac{5}{3}}$)} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{2}{17}$ | C. | $\frac{3}{26}$ | D. | $\frac{3}{28}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com