精英家教网 > 高中数学 > 题目详情
6.某班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为(  )
A.$\frac{1}{8}$B.$\frac{2}{17}$C.$\frac{3}{26}$D.$\frac{3}{28}$

分析 根据题意,分2种情况讨论,甲乙其中一人参加和甲乙两人都参加,再求出甲乙相邻的有多少种情况,由此能求出甲、乙两人都发言且发言顺序不相邻的概率.

解答 解:根据题意,分2种情况讨论,
若甲乙其中一人参加,有${C}_{2}^{1}{C}_{5}^{3}{A}_{4}^{4}$=480种情况,
若甲乙两人都参加,则丙不能参加,有${C}_{2}^{2}{C}_{4}^{2}{A}_{4}^{4}$=144种情况,
其中甲乙相邻的有${C}_{2}^{2}{C}_{4}^{2}{A}_{3}^{3}{A}_{2}^{2}$=72种情况,
则甲、乙两人都发言且发言顺序不相邻的概率为P=$\frac{144-72}{480+144}$=$\frac{3}{26}$.
故选:C.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在n元数集S={a1,a2,…,an}中,设χ(S)=$\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$,若S的非空子集A满足χ(A)=χ(S),则称A是集合S的一个“平均子集”,并记数集S的k元“平均子集”的个数为fS(k),已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},则fS(4)+fT(5)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足不等式组$\left\{\begin{array}{l}x+y-4≤0\\ x-3y+3≤0\\ x≥1\end{array}$,则z=$\frac{{|{x-y-4}|}}{{\sqrt{2}}}$的取值范围是$[{\frac{{7\sqrt{2}}}{4},3\sqrt{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,椭圆Γ上一动点M到其右焦点F(c,0)(c>0)的最小距离为2-$\sqrt{3}$.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)如图所示,设点B是椭圆Γ的上顶点,点P,Q是椭圆Γ上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=4,C=$\frac{π}{3}$.
(1)若△ABC的面积等于4$\sqrt{3}$,求a,b;
 (2)若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理科)在(1-x2)(1+x)10的展开式中,x5的系数是132(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则“$\overrightarrow{a}$•$\overrightarrow{b}$>0”是“△ABC为锐角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,正四棱柱ABCD-A1B1C1D1的底面边长为1,DD1=2,E为DD1的中点,连结C1E,CE,AC,AE,AC1,B1E.
(1)求证:B1E⊥AC;
(2)求点C1到平面AEC的距离;
(3)求二面角C1-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x-asinx,x∈[0,$\frac{π}{2}$].
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)若f(x)≤cosx,求实数a的取值范围.

查看答案和解析>>

同步练习册答案