精英家教网 > 高中数学 > 题目详情

【题目】设函数,f(x)=|x﹣a|
(Ⅰ)当a=2,解不等式,f(x)≥5﹣|x﹣1|;
(Ⅱ)若f(x)≤1的解集为[0,2],+=a(m>0,n>0),求证:m+2n≥4.

【答案】解:(Ⅰ)当a=2,不等式f(x)≥5﹣|x﹣1|,即|x﹣2|+|x﹣1|≥5.
由绝对值的意义可得,|x﹣2|+|x﹣1|表示数轴上的x对应点到1、2的距离之和,而﹣1和4到1、2的距离之和正好等于5,
故|x﹣2|+|x﹣1|≥5的解集为(﹣∞,﹣1]∪[4,+∞).
(Ⅱ)由f(x)≤1 可得﹣1≤x﹣a≤1,求得 a﹣1≤x≤a+1,
再根据f(x)≤1的解集为[0,2],可得a=1.
故有 +=1(m>0,n>0),∴m+2n=(m+2n)+=2++≥4,
当且仅当=时,等号成立,故m+2n≥4成立.
【解析】(Ⅰ)当a=2,不等式即|x﹣2|+|x﹣1|≥5.由绝对值的意义可得﹣1和4到1、2的距离之和正好等于5,从而求得|x﹣2|+|x﹣1|≥5的解集.
(Ⅱ)由f(x)≤1求得 a﹣1≤x≤a+1,再根据f(x)≤1的解集为[0,2],可得a=1,再根据 m+2n=(m+2n)+=2++ , 利用基本不等式证得要证的不等式.
【考点精析】本题主要考查了基本不等式和绝对值不等式的解法的相关知识点,需要掌握基本不等式:,(当且仅当时取到等号);变形公式:;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列三种说法:

是等边三角形;②;③三棱锥的体积是.

其中正确的序号是__________(写出所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a< 时,对于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且对任意的. .

(1)求并证明的奇偶性;

(2)判断的单调性并证明;

(3);若对任意恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,若在x轴上的截距为,且

求直线的交点坐标;

已知直线经过的交点,且在y轴上截距是在x轴上的截距的2倍,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为(0,+),若在(0,+)上为增函数,则称为“一阶比增函数”;若在(0,+)上为增函数,则称为”二阶比增函数”。我们把所有“一阶比增函数”组成的集合记为1,所有“二阶比增函数”组成的集合记为2

(1)已知函数,若1,求实数的取值范围,并证明你的结论;

(2)已知0<a<b<c,1的部分函数值由下表给出:

t

4

求证:

(3)定义集合,且存在常数k,使得任取x∈(0,+),<k},请问:是否存在常数M,使得任意的,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列推理过程不是演绎推理的是( ).

①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除

由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;

在数列中,,由此归纳出的通项公式

由“三角形内角和为”得到结论:直角三角形内角和为 .

A. ① ② B. ② ③ C. ③ ④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设直线与曲线相交于 两点,当变化时,求的最小值.

查看答案和解析>>

同步练习册答案