精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设直线与曲线相交于 两点,当变化时,求的最小值.

【答案】(1)(2)2

【解析】试题分析:(1)本问考查极坐标与直角坐标互化公式,根据可得,所以曲线C的直角坐标方程为 ;(2)本问考查直线参数方程标准形式下的几何意义,即将直线参数方程的标准形式,代入到曲线C的直角坐标方程,得到关于t的一元二次方程,设两点对应的参数分别为,列出 ,于是可以求出的最小值.

试题解析:(I)由由,得

曲线 的直角坐标方程为

(II)将直线的参数方程代入,得

两点对应的参数分别为

时, 的最小值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,f(x)=|x﹣a|
(Ⅰ)当a=2,解不等式,f(x)≥5﹣|x﹣1|;
(Ⅱ)若f(x)≤1的解集为[0,2],+=a(m>0,n>0),求证:m+2n≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,当a时,有成立.

在区间1上的最大值;

若对任意的都有,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意等比数列{an},下列说法一定正确的是(
A.a1 , a3 , a9成等比数列
B.a2 , a3 , a6成等比数列
C.a2 , a4 , a8成等比数列
D.a3 , a6 , a9成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥,底面为边长为2的正三角形,侧棱,

(1)求证:

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a1=1,an+1= +b(n∈N*
(1)若b=1,求a2 , a3及数列{an}的通项公式;
(2)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:

天数

1

2

3

4

5

6

繁殖个数

6

12

25

49

95

190

作出散点图可看出样本点分布在一条指数型函数的周围.

保留小数点后两位数的参考数据:

,其中

(1)求出关于的回归方程(保留小数点后两位数字);

(2)已知,估算第四天的残差.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.

(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;

(2)从所抽取的70分以上的学生中再随机选取4人.

①记表示选取4人的成绩的平均数,求

②记表示测试成绩在80分以上的人数,求的分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形中, 分别为的中点,以为圆心, 为半径的圆交,点在弧上运动(如图).若,其中,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案