【题目】对任意等比数列{an},下列说法一定正确的是( )
A.a1 , a3 , a9成等比数列
B.a2 , a3 , a6成等比数列
C.a2 , a4 , a8成等比数列
D.a3 , a6 , a9成等比数列
科目:高中数学 来源: 题型:
【题目】下列推理过程不是演绎推理的是( ).
①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;
③在数列
中,
,
,由此归纳出
的通项公式;
④由“三角形内角和为
”得到结论:直角三角形内角和为
.
A. ① ② B. ② ③ C. ③ ④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了防止受到核污染的产品影响民众的身体健康,某地要求这种产品在进入市场前必须进行两轮苛刻的核辐射检测,只有两轮检测都合格才能上市销售,否则不能销售。已知该产品第一轮检测不合格的概率为
,第二轮检测不合格的概率为
,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互之间没有影响。
(1)求该产品不能上市销售的概率;
(2)如果这种产品可以上市销售,则每件产品可获利50元;如果这种产品不能上市销售,则每件产品亏损80元(即获利为
80元)。现有这种产品4件,记这4件产品获利的金额为
元,求
的分布列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度xi和产卵数yi(i=1,2,…,10)的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.
![]()
![]()
表中
, ![]()
(1)根据散点图判断,
,
与
哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求y关于x回归方程;
②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny﹣2.4)+170,当温度x(x取整数)为何值时,培养成本的预报值最小?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=
,α=
﹣β
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路
的一侧修建一条运动比赛道,赛道的前一部分为曲线段
,该曲线段是函数
,
时的图象,且图象的最高点为
.赛道的中间部分为长
千米的直线跑道
,且
.赛道的后一部分是以
为圆心的一段圆弧
.
![]()
(1)求
的值和
的大小;
(2)若要在圆弧赛道所对应的扇形
区域内建一个“矩形草坪”,矩形的一边在道路
上,一个顶点在半径
上,另外一个顶点
在圆弧
上,且
,求当“矩形草坪”的面积取最大值时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点
为极点,
轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线
的参数方程为
,(
为参数,
),曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设直线
与曲线
相交于
,
两点,当
变化时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某小区内有两条互相垂直的道路
与
,平面直角坐标系
的第一象限有一块空地
,其边界
是函数
的图象,前一段曲线
是函数
图象的一部分,后一段
是一条线段.测得
到
的距离为8米,到
的距离为16米,
长为20米.
(1)求函数
的解析式;
(2)现要在此地建一个社区活动中心,平面图为梯形
(其中
,
为两底边),问:梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com