【题目】在直角坐标系
中,曲线
的普通方程为
,直线
的参数方程为
(
为参数),其中
.以坐标
为极点,以
轴非负半轴为极轴,建立极坐标系.
(1)求曲线
的极坐标方程和直线
的普通方程;
(2)设点
,
的极坐标方程为
,直线
与
的交点分别为
,
.当
为等腰直角三角形时,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】设
是公差不为零的等差数列,满足
,
,设正项数列
的前
项和为
,且
.
(1)求数列
和
的通项公式;
(2)在
和
之间插入1个数
,使
、
、
成等差数列;在
和
之间插入2个数
、
,使
、
、
、
成等差数列;
;在
和
之间插入
个数
、
、
、
,使
、
、
、
、
、
成等差数列.
① 求
;
② 对于①中的
,是否存在正整数
、
,使得
成立?若存在,求出所有的正整数对
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,若△
的三个顶点都在抛物线
上,且
,则称该三角形为“核心三角形”.
(1)是否存在“核心三角形”,其中两个顶点的坐标分别为
和
?请说明理由;
(2)设“核心三角形”
的一边
所在直线的斜率为4,求直线
的方程;
(3)已知△
是“核心三角形”,证明:点
的横坐标小于2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为
。
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当点P在椭圆上运动时,求证:以BD为直径的圆与直线PF恒相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前n项和为
,![]()
(1)求证:数列
是等比数列;
(2)若
,是否存在q的某些取值,使数列
中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由.
(3)若
,是否存在
,使数列
中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的极坐标方程和曲线
的参数方程;
(2)若
,直线
与曲线
交于
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com