精英家教网 > 高中数学 > 题目详情
如图,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1的左、右焦点,点P在椭圆上,△POF2是面积
3
的正三角形,求b2的值.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:与椭圆两个焦点有关的问题,一般以回归定义求解为上策,抓住△PF1F2为直角三角形建立等式关系.
解答: 解:由题意:
3
4
c2=
3
,则c=2,∴P(1,
3

代入椭圆方程
x2
a2
+
y2
b2
=1,得
1
b2+4
+
3
b2
=1
,求出b2=2
3
点评:本题考查了椭圆的基本量,关键抓住图形特征建立等式关系,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆C的方程为x2+y2-2x-2y-2=0,直线l的方程为(m+1)x-my-1=0,圆C被直线l截得的弦长等于(  )
A、4
B、2
2
C、2
D、与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{bn}的前n项和为Sn,Sn=
1
2
n(n+1)b1,b7=21,数列{an}满足a1b1+a2b2+…+anbn=n(n+1)(2n+1).
(1)求an
(2)Tn=a1-a2+a3-a4+…+(-1)n+1•an,求Tn
(3)求证:
1
a12
+
1
a22
+…+
1
an2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥S-ABCD的侧棱长为
2
,底面边长为
3
,E为SA中点,求异面直线BE与SC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,2),B(3,0),
(1)求AB的长度;
(2)求AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面交棱C1D1于N点,
(Ⅰ)求证:四边形A1MCN为平行四边形;
(Ⅱ)求直线CD1与平面A1MCN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BC⊥平面PBD;
(Ⅱ)若点E在线段PC上,且PC=3PE,求三棱锥P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
3
2
cos2x+
1
2
sin2x
(1)求函数f(x)最大值,及取得最大值时对应的x值.
(2)若x∈[0,
π
4
],求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算:2cos
π
2
+tan
π
4
+3sin0+cos2
π
3
+sin
2

(2)化简:
sin(2π-θ)cos(π+θ)cos(
π
2
+θ)cos(
11π
2
-θ)
cos(π-θ)sin(3π-θ)sin(-π-θ)sin(
2
+θ)

查看答案和解析>>

同步练习册答案