精英家教网 > 高中数学 > 题目详情
已知点A(-1,2),B(3,0),
(1)求AB的长度;
(2)求AB的直线方程.
考点:直线的两点式方程,两点间距离公式的应用
专题:直线与圆
分析:(1)利用两点之间的距离公式即可得出;
(2)利用两点式即可得出.
解答: 解:(1)|AB|=
(-1-3)2+(2-0)2
=2
5

(2)由两点式可得:
y-0
2-0
=
x-3
-1-3
,化为x+2y-3=0.
点评:本题考查了两点之间的距离公式、两点式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有(  )
A、4个B、2个C、1个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.
(1)求证:直线AB1∥平面BC1D;
(2)求证:平面BC1D⊥平面ACC1A;
(3)求三棱锥C-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱柱ABC-A1B1C1中,AC=BC,AA1⊥平面ABC,点D,D1分别是AB,A1B1的中点.
(1)求证:平面AC1D1∥平面CDB1
(2)求证:平面CDB1⊥平面ABB1A1
(3)若AC⊥BC,AC=AA1,求异面直线AC1与A1B所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+1,g(x)=x2-2x+1.
(1)设集合A={x|g(x)≥f(x)},求集合A;
(2)若x∈[-2,5],求g(x)的值域;
(3)画出y=
f(x),x≤0
g(x),x>0
的图象,写出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2分别为椭圆
x2
a2
+
y2
b2
=1的左、右焦点,点P在椭圆上,△POF2是面积
3
的正三角形,求b2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:kx-y+1=0,圆C:x2+y2-2x=0
(1)若直线l平行于直线x-ky+2=0,求k的值.
(2)若直线l和圆C相切,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)求证:PA∥平面EDB;
(Ⅱ)求二面角F-DE-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AA1=AC=AB=1,BC=
2
,D,E分别是AB,BB1的中点,求异面直线AC1,DE所成的角.

查看答案和解析>>

同步练习册答案