考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)连接B1C交BC1于点O,连接OD,则点O为B1C的中点.可得DO为△AB1C中位线,A1B∥OD,结合线面平行的判定定理,得A1B∥平面BC1D;
(2)由AA1⊥底面ABC,得AA1⊥BD.正三角形ABC中,中线BD⊥AC,结合线面垂直的判定定理,得BD⊥平面ACC1A1,最后由面面垂直的判定定理,证出平面BC1D⊥平面ACC1A;
(3)利用等体积转换,即可求三棱锥C-BC1D的体积.
解答:

(1)证明:连接B
1C交BC
1于点O,连接OD,则点O为B
1C的中点.
∵D为AC中点,得DO为△AB
1C中位线,
∴A
1B∥OD.
∵OD?平面AB
1C,A
1B?平面AB
1C,
∴直线AB
1∥平面BC
1D;
(2)证明:∵AA
1⊥底面ABC,
∴AA
1⊥BD,
∵底面ABC正三角形,D是AC的中点
∴BD⊥AC
∵AA
1∩AC=A,∴BD⊥平面ACC
1A
1,
∵BD?平面BC
1D,∴平面BC
1D⊥平面ACC
1A;
(3)解:由(2)知,△ABC中,BD⊥AC,BD=BCsin60°=3
,
∴S
△BCD=
×3×3=
,
∴V
C-BC1D=V
C1-BCD=
•
•6=9
.
点评:本题给出直三棱柱,求证线面平行、面面垂直并探索三棱锥的体积,着重考查了空间线面平行、线面垂直的判定与性质,考查了锥体体积公式的应用,属于中档题.