精英家教网 > 高中数学 > 题目详情
用图象法判断方程解的个数:
(1)
x
=x-1;
(2)x3=x2-3.
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:分别作出两个函数对应的图象,根据数形结合即可得到结论.
解答: 解:(1)分别作出y=
x
和y=x-1的图象如图:
则两个图象的交点个数有1个,故方程解的个数为1个.
(2)分别作出y=x3和y=x2-3的图象如图:
则两个图象的交点个数有1个,故方程解的个数为1个.
点评:本题主要考查方程根的个数的判断,根据方程和函数之间的关系,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象相邻两条对称轴之间的距离为
π
2
,函数y=f(x+
π
2
)为偶函数.
(1)求f(x)的解析式;
(2)若α为锐角,f(
α
2
+
π
12
)=
3
5
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线C1:x2=2py(p>0)上第一象限内的点P作C1的切线,依次交抛物线C2:x2=-2py于点Q,R,过Q,R分别作C2的切线,两条切线交于点M.
(1)若点P的坐标为(p,
p
2
),且过抛物线C1:x2=2py上的点P的切线点(1,0),求抛物线C1的方程;
(2)在(1)的条件下,(i)证明:点M在抛物线C1上;
(ii)连接MP,是否存在常数λ,使得S△PQM=λS△MQR?若存在,求出满足条件的常数λ,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:
(1)直线AB的方程;
(2)AB边上的高所在直线的方程;
(3)求AB的中位线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数φ(x)=3x(x∈R).
(1)若y=kx(k>0)与函数y=φ(x)的图象交于A,B两点,过点B作x轴的平行线交函数y=φ(3x)的图象于点C,若AC平行于y轴,求点A的纵坐标;
(2)令p(x)=
φ(x)
φ(x)+
3
,q(x)=
3
φ(2x)+3
,求证:p(
1
2014
)+p(
2
2014
)+…+p(
2013
2014
)=q(
1
2014
)+q(
2
2014
)+…+q(
2013
2014
).
(3)若f(x)=
φ(x+1)+a
φ(x)+b
为R的奇函数.
  (i)求函数f(x)的表达式;
  (ii)若对任意的x∈R,都有f(φ(2x)-1)+f(2-kφ(x))>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
6
2
2
4
+
6
4
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,an=an-1+1(n≥2,n∈N*
(1)求a2014的值;  
(2)若{an}的前n项和为Sn.求Sn≤2014的最大n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a2=1+cosα,a3=
cos2α+4cosα+3
2
,90°<α<180°
(1)1+3cosα+3cos2α+cos3α是数列中的第几项?
(2)若tan(180°-α)=
4
3
,求数列{an}前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+
3
y+m=0与圆x2+y2=8交于不同的两点A、B.O是坐标原点,|
OA
+
OB
|≥|
AB
|,那么实数m的取值范围是
 

查看答案和解析>>

同步练习册答案