精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

(2)若bn=2n+1an+2n+1,数列{bn}的前n项和为Tn.求满足不等式2010n的最小值.

【答案】(1)an=2n-1nN*;(2)n的最小值为10.

【解析】试题分析:本题属于基础题.对已知条件,用代替,两式相减可得,凑配得,由此可证得是等比数列,从而求出通项公式,这是已知数列前项和与项之间关系的一般处理方法;(2)由(1)可得,采用错位相减法可求出其前项和 ,不等式>2 010就转化为,可知n的最小值是10.

试题解析:(1)因为Snn2an,所以Sn12an1(n1)(n≥2n∈N*).两式相减,得an2an11.

所以an12(an11)(n≥2n∈N*),所以数列{an1}为等比数列.

因为Snn2an,令n1a11.

a112,所以an12n,所以an2n1.

(2)因为bn(2n1)an2n1,所以bn(2n1)·2n.

所以Tn3×25×227×23(2n1)·2n1(2n1)·2n

2Tn3×225×23(2n1)·2n(2n1)·2n1

,得-Tn3×22(22232n)(2n1)·2n1

6(2n1)·2n1

=-22n2(2n1)·2n1=-2(2n1)·2n1.

所以Tn2(2n1)·2n1.

>2 010

>2 010,即2n1>2 010.

由于2101 024,2112 048,所以n1≥11,即n≥10.

所以满足不等式>2 010n的最小值是10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是: (是参数).

(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;

(Ⅱ)若直线l与曲线C相交于AB两点,且,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱柱中,分别是的中点.

求证:平面平面

求证:平面

求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数的对称轴方程;

(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角ABC的对边,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 与椭圆 有且只有一个公共点

I)求椭圆C的标准方程;

II)若直线 CAB两点,且PAPB,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的解析式满足
(1)求函数f(x)的解析式;
(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(3)当a=1时,记函数 ,求函数g(x)在区间 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

求曲线的直角坐标方程,并指出其表示何种曲线;

设直线与曲线交于两点,若点的直角坐标为

试求当时, 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形, 为棱上一点,平面与棱交于点.

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)若,试问平面是否可能与平面垂直?若能,求出值;若不能,说明理由。

查看答案和解析>>

同步练习册答案