精英家教网 > 高中数学 > 题目详情
若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t满足f(lnt)+f(ln
1t
)≤2f(1)
时,那么t的取值范围是
 
分析:先根据对数的运算性质和函数的奇偶性性化简不等式,然后利用函数是偶函数得到不等式f(lnt)≤f(1).等价为f(|lnt|)≤f(1),然后利用函数在区间[0,+∞)上单调递增即可得到不等式的解集.
解答:解:∵函数f(x)是定义在R上的偶函数,
∴f(lnt)+f(ln
1
t
)=f(lnt)+f(-lnt)=f(lnt)+f(lnt)=2f(lnt),
∴不等式f(lnt)+f(ln
1
t
)≤2f(1)
等价为2f(lnt)≤2f(1),
即f(lnt)≤f(1).
∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.
∴不等式f(lnt)≤f(1)等价为f(|lnt|)≤f(1).
即|lnt|≤1,
∴-1≤lnt≤1,
解得
1
e
≤t≤e
即实数m的取值范围是
1
e
≤t≤e,
故答案为:
1
e
≤t≤e.
点评:本题主要考查函数奇偶性和单调性的应用,利用函数是偶函数的性质得到f(a)=f(|a|)是解决偶函数问题的关键.先利用对数的性质将不等式进行化简是解决本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(-3)=0,则使得x[f(x)+f(-x)]<0的x的取值范围是
(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)≤2f(4)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-x+1,则x<0时,f(x)的表达式是
f(x)=-x2-x-1,(x<0)
f(x)=-x2-x-1,(x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的奇函数,在(-∞,0)上为减函数,且f(2)=0,则使得f(x)<0的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的偶函数,在(-∞,0]上是增函数,则使得f(x)<f(2)的x取值范围是
x>2或x<-2
x>2或x<-2

查看答案和解析>>

同步练习册答案