【题目】已知a>0,b>0,且a+b=2;
(1)若ab<
恒成立,求m的取值范围;
(2)若
+
≥|x-1|+|x+2|恒成立,求x的取值范围.
【答案】(1)m>2;(2)-
≤x≤![]()
【解析】
(1)利用基本不等式求出ab的最大值,即可得到m的范围;(2)利用基本不等式求出
+
的最小值为8,然后解8≥|x﹣1|+|x+2|即可.
(1)∵a>0,b>0,∴2=a+b≥2
,即ab≤1,
所以ab的最大值为1,当且仅当a=b=1时取等号,
∴ab<
恒成立等价于1<
,解得m>2.
(2)∵
+
=
(a+b)(
+
)=
(9+1+
+
)≥
=8,当且仅当a=
,b=
时取等,
∴
+
≥|x-1|+|x+2|恒成立等价于8≥|x-1|+|x+2|,
①当x≤-2时,8≥-x+1-x-2,解得-
≤x≤-2,
②当-2<x<1时,8≥-x+1+x+2,解得-2<x<1,
③当x≥1时,8≥x-1+x+2,解得1≤x≤
,
综上可得-
≤x≤
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右顶点分别为A,B,点P在椭圆O上运动,若△PAB面积的最大值为
,椭圆O的离心率为
.
(1)求椭圆O的标准方程;
(2)过B点作圆E:
的两条切线,分别与椭圆O交于两点C,D(异于点B),当r变化时,直线CD是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A. 288种 B. 144种 C. 720种 D. 360种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等差数列,首项a1=1,且a3+1是a2+1与a4+2的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+
)=3
.
(1)求曲线C1,C2的直角坐标方程.
(2)若M是曲线C1上的一点,N是曲线C2上的一点,求|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的五面体
中,
,
,
,四边形
是正方形,二面角
的大小为
.
![]()
(1)在线段
上找出一点
,使得
平面
,并说明理由;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上的三点
、
、
.
(1)求以
、
为焦点且过点
的椭圆的标准方程;
(2)设点
、
、
关于直线
的对称点分别为
、
、
,求以
、
为焦点且过点
的双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆C:
1(a>b>0)的离心率为
,左右焦点分别是F1,F2,以F1为圆心,以3为半径的圆与以F2为圆心,以1为半径的圆相交,且交点
在椭圆C上.
(1)求椭圆C的方程;
(2)设椭圆E:
1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点.射线PO交椭圆E于点Q.
(i)求
的值,
(ii)求△ABQ面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com