(本小题满分12分)已知函数
.
(1)求函数
的最小正周期;
(2)求函数
在区间
上的最小值和最大值.
科目:高中数学 来源:2014-2015学年河南省高二上学期第一次月考试理科数学卷(解析版) 题型:选择题
在
中,若
,则
的形状是 ( )
A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定
查看答案和解析>>
科目:高中数学 来源:2014-2015学年河北邢台一中高二上学期期中考试文科数学试卷(解析版) 题型:选择题
已知实数
,执行如图所示的程序框图,则输出的x不小于55的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省山一等七校高三12月联考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知函数
.
(1)若曲线
在
处的切线为
,求
的值;
(2)设![]()
,
,证明:当
时,
的图象始终在
的图象的下方;
(3)当
时,设
,(
为自然对数的底数),
表示
导函数,求证:对于曲线
上的不同两点
,
,
,存在唯一的![]()
,使直线
的斜率等于
.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省山一等七校高三12月联考文科数学试卷(解析版) 题型:填空题
函数
的图象中相邻两条对称轴的距离为____________________________.
![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省山一等七校高三12月联考文科数学试卷(解析版) 题型:选择题
已知实数
满足约束条件
,则
的最大值为( ).
A.24 B.20 C.16 D.12
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省山一等七校高三12月联考理科数学试卷(解析版) 题型:选择题
由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集
划分为两个非空的子集
与
,且满足
,
,
中的每一个元素都小于
中的每一个元素,则称
为戴德金分割.试判断,对于任一戴德金分割
,下列选项中,不可能成立的是( )
A.
没有最大元素,
有一个最小元素
B.
没有最大元素,
也没有最小元素
C.
有一个最大元素,
有一个最小元素
D.
有一个最大元素,
没有最小元素
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省肇庆市毕业班第一次统一检测理科数学试卷(解析版) 题型:选择题
现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这三张卡片不能是同一种颜色,且绿色卡片至多1张,不同的取法的种数为
A.484 B.472 C.252 D.232
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com