精英家教网 > 高中数学 > 题目详情
14.2和8的等比中项有4和-4.

分析 直接利用等比中项的定义即可求解.

解答 解:设2与8的等比中项为b,则由等比中项的定义可知,b2=2×8=16
∴b=±4
故答案是:-4.

点评 本题主要考查了等比中项的定义的简单应用,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数r(x)=alnx,s(x)=b(x-$\frac{1}{x}$),a,b为实数且a≠0.
(1)设函数f(x)=r(x)+s(x).当a=-2时,f(x)在其定义域内为单调增函数,求b的取值范围;
(2)设函数g(x)=r(x)-s(x)+x.当b=1时,在区间(0,e](其中e为自然对数的底数)上是否存在实数x0,使得g(x0)<0成立,若存在,求实数a的取值范围; 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{{2\sqrt{3}}}{3}$,过右焦点F的直线与两条渐近线分别交于点A、B且与其中一条渐近线垂直,若△OAB的面积为2$\sqrt{3}$,其中O为坐标原点,则双曲线的焦距为(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$2\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,角A、B、C所对的边分别为a,b,c,已知a+c=6$\sqrt{3}$,b=6
(1)求cosB的最小值    
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=12,求A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A={y|y=log2x,x>1},B={y|y=$\frac{1}{x}$,x>2},则A∪B=(  )
A.[$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.(0,+∞)D.(-∞,0]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a=6,B=30°,C=120°,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1的各棱长均为2,其正视图如图所示,则此三棱柱侧视图的面积为(  )
A.2B.4C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别是a,b,c,且cosA=$\frac{{\sqrt{6}}}{3}$.
(1)求tan2A;
(2)若cosB=$\frac{{2\sqrt{2}}}{3},c=2\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.运行如图所示框图的相应程序,若输入a,b的值分别为0.25和4,则输出M的值是(  )
A.0B.1C.2D.-1

查看答案和解析>>

同步练习册答案