分析 (1)根据同角的三角函数关系,结合正切函数的倍角公式进行求解,
(2)根据两角和差的正弦公式结合正弦定理以及三角形的面积公式进行求解.
解答 解:(1)∵$cosA=\frac{{\sqrt{6}}}{3}$,∴$sinA=\frac{{\sqrt{3}}}{3}$,则$tanA=\frac{{\sqrt{2}}}{2}$,
∴$tan2A=\frac{2tanA}{{1-{{tan}^2}A}}=2\sqrt{2}$-------------------------(5分)
(2)∵$cosB=\frac{{2\sqrt{2}}}{3}$,∴$sinB=\frac{1}{3}$,
则$sinC=sin(A+B)=sinAcosB+cosAsinB=\frac{{\sqrt{6}}}{3}$,
由正弦定理得$a=\frac{csinA}{sinC}=2$,
所以△ABC的面积为$S=\frac{1}{2}acsinB=\frac{{2\sqrt{2}}}{3}$---------------(12分)
点评 本题主要考查正弦定理和三角形面积的计算,以及两角和差的正弦公式的计算,考查学生的计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com