| A. | $-\frac{5}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
分析 根据已知中函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),求出f(2)=1,代入可得答案.
解答 解:∵函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),
∴f(1)=f(-1)+f(2)=-$\frac{1}{2}$+f(2)=$\frac{1}{2}$,
解得:f(2)=1,
∴f(3)=f(1)+f(2)=$\frac{3}{2}$,
f(5)=f(3)+f(2)=$\frac{5}{2}$,
故选:D.
点评 本题考查的知识点是抽象函数的应用,函数求值,难度不大,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+y2=$\frac{1}{4}$ | B. | (x-1)2+y2=$\frac{1}{2}$ | C. | (x+1)2+y2=$\frac{1}{2}$ | D. | D、(x+1)2+y2=$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{|x|}{x}$ | B. | y=${a^{{{log}_a}x}}$(a>0且a≠1) | ||
| C. | y=$\sqrt{x^2}$ | D. | y=logaax(a>0且a≠1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com