精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
cos2x
sin(x+
π
4
)
的定义域为D,集合A=[-π,π].
(Ⅰ)求D∩A;
(Ⅱ)若f(x)=
4
3
,求sin2x的值.
考点:三角函数中的恒等变换应用
专题:函数的性质及应用
分析:(Ⅰ)首先,求解函数的定义域,然后,借助于集合的交集运算求解;
(Ⅱ)首先,利用f(x)=
4
3
,得到cosx-sinx=
2
2
3
,然后,借助于二倍角公式求解.
解答: 解:(Ⅰ)由题意,sin(x+
π
4
)≠0

x+
π
4
≠kπ(k∈Z)

则函数f(x)的定义域为D={x∈R|x≠kπ-
π
4
,k∈Z}

而A=[-π,π],
x≠-
π
4
,x≠
4

∴集合A∩D=[-π,-
π
4
)∪(-
π
4
4
)∪(
4
,π]

(Ⅱ)f(x)=
cos2x
sin(x+
π
4
)
=
cos2x
sinxcos
π
4
+cosxsin
π
4

=
2
cos2x
sinx+cosx

=
2
(cos2x-sin2x)
sinx+cosx
=
2
(cosx-sinx)

f(x)=
4
3

cosx-sinx=
2
2
3

∴sin2x=1-(cosx-sinx)2=1-
8
9
=
1
9
点评:本题重点考查了三角函数的图象与性质、二倍角公式、两角和与差的三角函数等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

向如图中所示正方形内随机地投掷飞镖,飞镖落在阴影部分的概率为(  )
A、
35
18
B、
25
36
C、
25
144
D、
25
72

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=3,b=4,c=
13
,那么C等于(  )
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.
(1)求实数a,b的值;   
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-a
lnx
,其中a为实数.
(Ⅰ)当a≥1时,判断函数y=f(x)的单调区间;
(Ⅱ)是否存在实数a,使得对任意x∈(0,1)∪(1,+∞),f(x)>
x
恒成立?若不存在,请说明理由,若存在,求出a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若对任意n∈N*,数列{an}的前n项和Sn都为完全平方数,则称数列{an}为“完全平方数列”;特别的,若存在n∈N*,使数列{an}的前n项和Sn为完全平方数,则称数列{an}为“部分平方数列”.
(1)若数列{an}为“部分平方数列”,且an=
2,      n=1
2n-1, n≥2
(n∈N*),求使数列{an}的前n项和Sn为完全平方数列时n的值;
(2)若数列{bn}的前n项和Tn=(n-t)2(其中t∈N*),那么数列{|bn|}是否为“完全平方数列”?若是,求出t的值;若不是,请说明理由;
(3)试求所有为“完全平方数列”的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学校园内原有一块四分之一圆面形状的草坪AMN(图1),其中AM=AN=8m,∠MAN=90°.今年暑假整治校园环境时,为美观起见,学校设计将原有草坪扩大,具体实施方案是:从圆弧上一点P作圆弧的切线BD,分别与AM,AN的延长线交于B,D,并以AB,AD为邻边构造矩形ABCD,再以C为圆心制作一块与AMN形状相同的草坪,构成矩形绿地ABCD(图2).
(1)求矩形绿地ABCD占地面积的最小值;
(2)若由于地形条件限制,使得矩形一边AB的长度不能超过10m,求此时矩形绿地ABCD占地面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xlnx
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
8
1
2
]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,nan=(n+1)an-1(n≥2,n∈N*),则
an2+16
n+1
取得最小值的n的值为
 

查看答案和解析>>

同步练习册答案