已知两条直线m,n,两个平面α,β.给出下面四个命题:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正确命题的序号是( )
A.①③ B.②④ C.①④ D.②③
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:选择题
如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )
![]()
A.2
B.6 C.3
D.2![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题
如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=
AD=a,G是EF的中点,则GB与平面AGC所成角的正弦值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:解答题
如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.
![]()
(1)求证:AD⊥PB;
(2)求点E到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:填空题
已知平面α,β和直线m,给出下列条件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)当满足条件________时,有m∥β;
(2)当满足条件________时,有m⊥β(填所选条件的序号).
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:解答题
如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥D-A1B1C的体积.
![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题
在空间四边形ABCD中,E、F分别为AB、AD上的点,且AE∶EB=AF∶FD=1∶4,又H、G分别为BC、CD的中点,则( )
A.BD∥平面EFG,且四边形EFGH是平行四边形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是平行四边形
D.EH∥平面ADC,且四边形EFGH是梯形
![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题
设b,c表示两条直线,α,β表示两个平面,则下列命题正确的是( )
A.若b?α,c∥α,则c∥b
B.若b?α,b∥c,则c∥α
C.若c?α,α⊥β,则c⊥β
D.若c?α,c⊥β,则α⊥β
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题
设x,y,z>0,则三个数
+
,
+
,
+
( )
A.都大于2 B.至少有一个大于2
C.至少有一个不小于2 D.至少有一个不大于2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com