精英家教网 > 高中数学 > 题目详情

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.

(1)求证:AD⊥PB;

(2)求点E到平面PBC的距离.

 

(1)见解析 (2)

【解析】(1)连接PE、EB、BD,因为平面PAD⊥平面ABCD,△PAD为等边三角形,E为AD的中点,所以PE⊥AD,PE⊥平面ABCD,因为四边形ABCD为菱形,且∠DAB=60°,所以△ABD为等边三角形.

又E为AD的中点,所以BE⊥AE.

又PE∩BE=E,所以AD⊥平面PBE,所以AD⊥PB.

(2)过E作EF⊥PB交PB于点F,由(1)知AD⊥平面PBE,

因为AD∥BC,所以BC⊥平面PBE,

所以平面BPC⊥平面PBE,又平面PBC∩平面PBE=PB,故EF⊥平面PBC.

故点E到平面PBC的距离EF=.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:解答题

已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.

(1)求直线CD的方程;

(2)求圆P的方程.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:选择题

直线2x-my+1-3m=0,当m变化时,所有直线都过定点(  )

A.(-,3) B.(,3)

C.(,-3) D.(-,-3)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

如图所示,在正方体ABCD-A1B1C1D1

中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是(  )

A.平行 B.相交

C.异面垂直 D.异面不垂直

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

如图所示,已知空间四边形OABC中,|OB|=|OC|,且∠AOB=∠AOC,则夹角θ的余弦值为(  )

A.0 B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:填空题

如图PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

已知两条直线m,n,两个平面α,β.给出下面四个命题:

①m∥n,m⊥α⇒n⊥α;

②α∥β,m?α,n?β⇒m∥n;

③m∥n,m∥α⇒n∥α;

④α∥β,m∥n,m⊥α⇒n⊥β.

其中正确命题的序号是(  )

A.①③ B.②④ C.①④ D.②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:填空题

点E、F、G分别是正方体ABCD-A1B1C1D1的棱AB、BC、B1C1的中点,如图所示,则下列命题中的真命题是________(写出所有真命题的编号).

①以正方体的顶点为顶点的三棱锥的四个面中最多只有三个面是直角三角形;

②过点F、D1、G的截面是正方形;

③点P在直线FG上运动时,总有AP⊥DE;

④点Q在直线BC1上运动时,三棱锥A-D1QC的体积是定值;

⑤点M是正方体的平面A1B1C1D1内的到点D和C1距离相等的点,则点M的轨迹是一条线段.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:选择题

用数学归纳法证明1++…+> (n∈N*)成立,其初始值至少应取(  )

A.7 B.8 C.9 D.10

 

查看答案和解析>>

同步练习册答案