精英家教网 > 高中数学 > 题目详情

已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.

(1)求直线CD的方程;

(2)求圆P的方程.

 

(1)x+y-3=0 (2)(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40

【解析】(1)直线AB的斜率k=1,AB的中点坐标为(1,2),

∴直线CD的方程为y-2=-(x-1),即x+y-3=0.

(2)设圆心P(a,b),

则由P在CD上得a+b-3=0.①

又直径|CD|=4

∴|PA|=2.

∴(a+1)2+b2=40.②

由①②解得

∴圆心P(-3,6)或P(5,-2).

∴圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-8曲线与方程(解析版) 题型:选择题

长为3的线段AB的端点A、B分别在x轴、y轴上移动,=2,则点C的轨迹是(  )

A.线段 B.圆 C.椭圆 D.双曲线

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-5椭圆(解析版) 题型:填空题

F1,F2是椭圆=1的左、右两焦点,P为椭圆的一个顶点,若△PF1F2是等边三角形,则a2=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:选择题

已知圆C:x2+(y-3)2=4,过A(-1,0)的直线l与圆C相交于P,Q两点,若|PQ|=2,则直线l的方程为(  )

A.x=-1或4x+3y-4=0

B.x=-1或4x-3y+4=0

C.x=1或4x-3y+4=0

D.x=1或4x+3y-4=0

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:填空题

已知圆C:(x-3)2+(y-4)2=1,点A(-1,0),B(1,0),点P为圆上的动点,则d=|PA|2+|PB|2的最大值为________,最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:选择题

过点M(1,2)的直线l将圆(x-2)2+y2=9分成两段弧,当其中的劣弧最短时,直线的方程是(  )

A.x=1 B.y=1

C.x-y+1=0 D.x-2y+3=0

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:选择题

如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是(  )

A.2 B.6 C.3 D.2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:选择题

设M=,N=,则M与N的大小关系为(  )

A.M>N B.M=N C.M<N D.无法判断

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:解答题

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.

(1)求证:AD⊥PB;

(2)求点E到平面PBC的距离.

 

查看答案和解析>>

同步练习册答案