精英家教网 > 高中数学 > 题目详情

如图PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.

 

 

①②④

【解析】①AE?平面PAC,BC⊥AC,BC⊥PA⇒AE⊥BC,

故①正确,②AE⊥PB,AF⊥PB⇒EF⊥PB,故②正确,③若AF⊥BC⇒AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误,由①可知④正确.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:选择题

过点M(1,2)的直线l将圆(x-2)2+y2=9分成两段弧,当其中的劣弧最短时,直线的方程是(  )

A.x=1 B.y=1

C.x-y+1=0 D.x-2y+3=0

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:解答题

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;

(2)求平面ADC1与平面ABA1夹角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:解答题

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.

(1)求证:AD⊥PB;

(2)求点E到平面PBC的距离.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有(  )

A.AH⊥△EFH所在平面

B.AG⊥△EFH所在平面

C.HF⊥△AEF所在平面

D.HG⊥△AEF所在平面

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.

(1)求证:BC1∥平面A1CD;

(2)求三棱锥D-A1B1C的体积.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:填空题

如图所示为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个结论:

①点M到AB的距离为

②三棱锥C-DNE的体积是

③AB与EF所成的角是.

其中正确结论的序号是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:解答题

已知函数f(x)=ax+ (a>1).

(1)证明:函数f(x)在(-1,+∞)上为增函数;

(2)用反证法证明方程f(x)=0没有负数根.

 

查看答案和解析>>

同步练习册答案