精英家教网 > 高中数学 > 题目详情
1.在△ABC中,AB=3,AC=4,BC=5,O点是内心,且$\overrightarrow{AO}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{BC}$,则λ12=$\frac{5}{6}$.

分析 设内切圆半径为r,由题意得:r=OE=OF=AE=AF=$\frac{a+b-c}{2}=\frac{3+4-5}{2}=1$,从而表示出向量$\overrightarrow{AO}$,根据向量之间的加减关系,写出向量与要求两个向量之间的关系,得到两个系数的值,求和得到结果.

解答 解:设内切圆半径为r,
由题意得:r=OE=OF=AE=AF═$\frac{a+b-c}{2}=\frac{3+4-5}{2}=1$,
∴$\overrightarrow{AO}=\overrightarrow{AE}+\overrightarrow{AF}$=$\frac{1}{3}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$
=$\frac{1}{3}\overrightarrow{AB}+\frac{1}{4}(\overrightarrow{AB}+\overrightarrow{BC})$
=$\frac{7}{12}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{BC}$,
∴${λ}_{1}=\frac{7}{12}$,${λ}_{2}=\frac{1}{4}$.
∴λ12=$\frac{5}{6}$.
故答案为:$\frac{5}{6}$.

点评 本题考查向量知识,考查平面向量基本定理的运用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x}_{i}$=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$${{x}_{i}}^{2}$=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为8千元.
(附:线性回归方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.由以下这组数据得线性回归方程一定过点(  )
x-4-3-2-11234
  y3.62.51.9-0.3-1.4-2-2.3-2
A.(-2,1.9)B.(0,0)C.(2,-2)D.(-3,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A、B、C所对的边分别为a、b、c,已知c=2a,sinA=$\frac{1}{2}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(3x)=2x•log23,则f(21005)的值等于2010.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=x-aex,x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2,则a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈(-∞,0),2x<3x;命题q:?x∈(-∞,+∞),f(x)=x3+x+6单调递增.则下面选项中真命题是(  )
A.(?p)∧qB.(?p)∧(?q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为DD1的中点.
(I)求证:AB1⊥面PBC;
(Ⅱ)在BC边上找一点Q,使PQ∥面A1ABB1,并求二面角B1-PQ-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当点P在圆x2+y2=1上变动时,它与定点Q(-3,0)的连结线段PQ的中点的轨迹方程是(  )
A.(x+3)2+y2=4B.(x-3)2+y2=4C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1

查看答案和解析>>

同步练习册答案