精英家教网 > 高中数学 > 题目详情
精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若图象g(x)与函数f(x)的图象关于点P(4,0)对称,求函数g(x)的单调递增区间.
分析:(1)由图象,求出A,T=16,ω=
π
8
,利用函数过(-2,0)求出φ,然后求得函数f(x)的解析式;
(2)函数g(x)的图象与函数f(x)的图象关于点P(4,0)对称,满足g(4+x)+f(4-x)=0,则g(x)=-f(8-x),然后求函数g(x)的表达式,再求它的单调递增区间.
解答:解:(1)由题意A=
2
,T=16,ω=
π
8
,x=-2时f(x)=0,
即:sin[
π
8
×(-2)+φ]=0;
∴φ=
π
4
f(x)=
2
sin(
π
8
x+
π
4
)
(6分)
(2)∵g(4+x)+f(4-x)=2×0
∴g(x)=-f(8-x)=-
2
sin[
π
8
(8-x)+
π
4
]

=-
2
sin(
4
-
π
8
x)=
2
sin(
π
8
x-
4
)
令2kπ-
π
2
π
8
x-
4
≤2kπ+
π
2

得16k+6≤x≤16k+14(k∈Z).
所以f(x)的单调递增区间是[16k+6,16k+14](k∈Z).(12分)
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,注意化简x的系数为正,考查计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案